cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269276 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.

Original entry on oeis.org

0, 4, 0, 24, 108, 0, 108, 1368, 1620, 0, 432, 13896, 46872, 20412, 0, 1620, 127512, 1104264, 1365336, 236196, 0, 5832, 1104264, 23549400, 74853576, 36673560, 2598156, 0, 20412, 9211608, 474819408, 3719884392, 4684312584, 938176344
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2016

Keywords

Comments

Table starts
.0........4..........24............108...............432................1620
.0......108........1368..........13896............127512.............1104264
.0.....1620.......46872........1104264..........23549400...........474819408
.0....20412.....1365336.......74853576........3719884392........174924572760
.0...236196....36673560.....4684312584......542973139128......59587625651904
.0..2598156...938176344...279339197256....75556007986536...19356924219624936
.0.27634932.23230366488.16128206816904.10181956012212600.6090616046325570480

Examples

			Some solutions for n=3 k=4
..0..2..0..1. .0..0..0..0. .0..2..0..0. .0..0..0..0. .0..0..2..0
..0..2..3..1. .2..2..0..0. .2..2..3..1. .2..0..2..1. .0..2..2..3
..2..1..0..2. .3..2..1..1. .0..1..0..2. .0..0..1..3. .3..1..1..0
		

Crossrefs

Row 1 is A120908.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 18*a(n-1) -81*a(n-2)
k=3: a(n) = 42*a(n-1) -441*a(n-2)
k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3
k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4)
k=6: [order 6] for n>7
k=7: [order 10] for n>11
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4
n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7
n=4: [order 8] for n>12
n=5: [order 18] for n>23
n=6: [order 40] for n>46