A269276 T(n,k)=Number of nXk 0..3 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling three exactly once.
0, 4, 0, 24, 108, 0, 108, 1368, 1620, 0, 432, 13896, 46872, 20412, 0, 1620, 127512, 1104264, 1365336, 236196, 0, 5832, 1104264, 23549400, 74853576, 36673560, 2598156, 0, 20412, 9211608, 474819408, 3719884392, 4684312584, 938176344
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..2..0..1. .0..0..0..0. .0..2..0..0. .0..0..0..0. .0..0..2..0 ..0..2..3..1. .2..2..0..0. .2..2..3..1. .2..0..2..1. .0..2..2..3 ..2..1..0..2. .3..2..1..1. .0..1..0..2. .0..0..1..3. .3..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..241
Crossrefs
Row 1 is A120908.
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 18*a(n-1) -81*a(n-2)
k=3: a(n) = 42*a(n-1) -441*a(n-2)
k=4: a(n) = 98*a(n-1) -2401*a(n-2) for n>3
k=5: a(n) = 234*a(n-1) -14277*a(n-2) +68796*a(n-3) -86436*a(n-4)
k=6: [order 6] for n>7
k=7: [order 10] for n>11
Empirical for row n:
n=1: a(n) = 6*a(n-1) -9*a(n-2)
n=2: a(n) = 14*a(n-1) -49*a(n-2) for n>4
n=3: a(n) = 36*a(n-1) -378*a(n-2) +972*a(n-3) -729*a(n-4) for n>7
n=4: [order 8] for n>12
n=5: [order 18] for n>23
n=6: [order 40] for n>46
Comments