A269301 Normalization coefficients for quantum Pascal's pyramid, numerators of: T(n,k,m) = ((n - m)! m!)/(2^n (n - k)! k!).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
First nontrivial block: 1, 1, 1, 1 3, 1, 1, 3 3, 1, 1, 3 1, 1, 1, 1
Programs
-
Mathematica
NormFrac[Block_] := Outer[Function[{n, k, m}, ((n - m)! m!)/(2^n (n - k)! k!)][ Block, #1, #2] &, Range[0, Block], Range[0, Block], 1]; Flatten[ Numerator[NormFrac[#]] & /@ Range[0, 5]]
Formula
T(n,k,m) = Numerator[((n - m)! m!)/(2^n (n - k)! k!)]
Comments