A269302 Normalization coefficients for quantum Pascal's pyramid, denominators of: T(n,k,m) = ((n - m)! m!)/(2^n (n - k)! k!).
1, 2, 2, 2, 2, 4, 8, 4, 2, 4, 2, 4, 8, 4, 8, 24, 24, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 24, 24, 8, 16, 64, 96, 64, 16, 4, 16, 24, 16, 4, 8, 32, 16, 32, 8, 4, 16, 24, 16, 4, 16, 64, 96, 64, 16, 32, 160, 320, 320, 160, 32, 32, 32, 64, 64, 32, 32, 16, 16, 32, 32, 16, 16, 16, 16, 32, 32, 16, 16, 32, 32, 64, 64, 32, 32, 32, 160, 320, 320, 160, 32
Offset: 0
Examples
First few blocks: 1 . . 2, 2 . . 2, 2 . . . . . 4, 8, 4 . . . . . 2, 4, 2 . . . . . 4, 8, 4
Programs
-
Mathematica
NormFrac[Block_] := Outer[Function[{n, k, m}, ((n - m)! m!)/(2^n (n - k)! k!)][ Block, #1, #2] &, Range[0, Block], Range[0, Block], 1]; Flatten[ Denominator[NormFrac[#]] & /@ Range[0, 5]]
Formula
T(n,k,m) = Denominator[((n - m)! m!)/(2^n (n - k)! k!)]
Comments