A269318 Discriminants of real quadratic number fields with 3-class rank 2.
32009, 42817, 62501, 72329, 94636, 103809, 114889, 130397, 142097, 151141, 152949, 153949, 172252, 173944, 184137, 189237, 206776, 209765, 213913, 214028, 214712, 219461, 220217, 250748, 252977, 255973, 259653, 265245, 275881, 282461, 283673, 298849, 320785, 321053, 326945, 333656, 335229, 341724, 342664, 358285, 363397, 371965, 384369, 390876
Offset: 1
Examples
The execution of the Magma program yields the 161 leading terms of A269318 up to 10^6 and requires 9200 seconds on a single thread of an Intel i7 4-core processor with clock frequency 4GHz. The computation is slow because 303957 discriminants have to be checked for the structure of their associated 3-class groups. Among the 161 3-class groups of 3-rank 2, there are 149 of type (3,3) and 12 of type (9,3). Parallelization (for instance, 4 threads processing ranges of length 250000) would reduce the CPU time.
Links
- I. O. Angell, A table of totally real cubic fields, Math. Comp. 30 (1976), no. 133, 184-187.
- M. R. Bush, private communication, 11 July 2015.
- H. Cohen and J. Martinet, Class groups of number fields: numerical heuristics, Math. Comp. 48 (1987), no. 177, 123-137.
- V. Ennola and R. Turunen, On totally real cubic fields, Math. Comp. 44 (1985), no. 170, 495-518.
- P. Llorente and J. Quer, On totally real cubic fields with discriminant D < 10^7, Math. Comp. 50 (1988), no. 182, 581-594.
- D. C. Mayer, Quadratic p-ring spaces for counting dihedral fields, Int. J. Number Theory 10 (2014), no. 8, 2205-2242.
Crossrefs
Subsequence A269319.
Programs
-
Magma
SetClassGroupBounds("GRH"); p:=3; for d:=0 to 10^6 do if ((d gt 1) and IsFundamental(d)) then Q:=QuadraticField(d); O:=MaximalOrder(Q); C:=ClassGroup(O); if (2 eq #pPrimaryInvariants(C,p)) then printf "%o,",d; end if; end if; end for;
Comments