A269403 Expansion of x*(2 - x + 2*x^2 + x^3)/((1 - x)^3*(1 + x + x^2 + x^3)).
0, 2, 3, 6, 10, 16, 21, 28, 36, 46, 55, 66, 78, 92, 105, 120, 136, 154, 171, 190, 210, 232, 253, 276, 300, 326, 351, 378, 406, 436, 465, 496, 528, 562, 595, 630, 666, 704, 741, 780, 820, 862, 903, 946, 990, 1036, 1081, 1128, 1176, 1226, 1275, 1326, 1378, 1432, 1485
Offset: 0
Examples
a(0) = 0; a(1) = 0 + 2 = 2; a(2) = 0 + 2 + 1 = 3; a(3) = 0 + 2 + 1 + 3 = 6; a(4) = 0 + 2 + 1 + 3 + 4 = 10; a(5) = 0 + 2 + 1 + 3 + 4 + 6 = 16; a(6) = 0 + 2 + 1 + 3 + 4 + 6 + 5 = 21; a(7) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 = 28; a(8) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 + 8 = 36; a(9) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 + 8 + 10 = 46, etc.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
Mathematica
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 2, 3, 6, 10, 16}, 55] Table[(2 n^2 + 2 n + 2 Sin[(Pi n)/2] - (-1)^n + 1)/4, {n, 0, 54}]
Formula
G.f.: x*(2 - x + 2*x^2 + x^3)/((1 - x)^3*(1 + x + x^2 + x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
a(n) = (2*n^2 + 2*n + 2*sin((Pi*n)/2) - (-1)^n + 1)/4.
Sum_{n>=1} 1/a(n) = 1.495144413654306177...
Comments