cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269403 Expansion of x*(2 - x + 2*x^2 + x^3)/((1 - x)^3*(1 + x + x^2 + x^3)).

Original entry on oeis.org

0, 2, 3, 6, 10, 16, 21, 28, 36, 46, 55, 66, 78, 92, 105, 120, 136, 154, 171, 190, 210, 232, 253, 276, 300, 326, 351, 378, 406, 436, 465, 496, 528, 562, 595, 630, 666, 704, 741, 780, 820, 862, 903, 946, 990, 1036, 1081, 1128, 1176, 1226, 1275, 1326, 1378, 1432, 1485
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 25 2016

Keywords

Comments

Partial sums of A080412.

Examples

			a(0) = 0;
a(1) = 0 + 2 = 2;
a(2) = 0 + 2 + 1 = 3;
a(3) = 0 + 2 + 1 + 3 = 6;
a(4) = 0 + 2 + 1 + 3 + 4 = 10;
a(5) = 0 + 2 + 1 + 3 + 4 + 6 = 16;
a(6) = 0 + 2 + 1 + 3 + 4 + 6 + 5 = 21;
a(7) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 = 28;
a(8) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 + 8 = 36;
a(9) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 + 8 + 10 = 46, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 2, 3, 6, 10, 16}, 55]
    Table[(2 n^2 + 2 n + 2 Sin[(Pi n)/2] - (-1)^n + 1)/4, {n, 0, 54}]

Formula

G.f.: x*(2 - x + 2*x^2 + x^3)/((1 - x)^3*(1 + x + x^2 + x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
a(n) = (2*n^2 + 2*n + 2*sin((Pi*n)/2) - (-1)^n + 1)/4.
Sum_{n>=1} 1/a(n) = 1.495144413654306177...