cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269452 phi(A157352(n)), n >= 1, where phi is Euler's totient function A000010, and A157352 gives the products of two distinct safe primes.

Original entry on oeis.org

24, 40, 60, 88, 132, 184, 220, 232, 276, 348, 328, 460, 424, 492, 580, 636, 664, 712, 820, 1012, 904, 996, 1060, 1068, 1048, 1276, 1356, 1384, 1432, 1660, 1572, 1804, 1528, 1780, 1864, 1912, 2076, 2332, 2260, 2148, 2008, 2292, 2668, 2248, 2620, 2344, 2796, 2868, 3012, 2872, 3460, 3652, 3772, 3372
Offset: 1

Views

Author

Marina Ibrishimova, Feb 27 2016

Keywords

Comments

phi(p*q) = (p-1)(q-1) where p, q are distinct safe primes.
2^(a(n)/2) == 1 (mod A157352(n)). For the reference see a comment on A269454. - Wolfdieter Lang, Mar 31 2016

Crossrefs

Programs

  • Mathematica
    EulerPhi /@ Select[Select[Range@ 4000, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(# - 1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* Michael De Vlieger, Feb 28 2016 *)

Formula

a(n) = phi(A157352(n)), n >= 1.

Extensions

More terms from Michael De Vlieger, Feb 28 2016