cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marina Ibrishimova

Marina Ibrishimova's wiki page.

Marina Ibrishimova has authored 5 sequences.

A276290 Products of odd primes p and q such that either p or q is in the trajectory of (p*q)+1 under the Collatz 3x+1 map (A014682).

Original entry on oeis.org

25, 35, 55, 65, 77, 85, 95, 115, 133, 143, 145, 155, 161, 185, 203, 205, 209, 215, 217, 235, 253, 259, 265, 287, 295, 305, 329, 341, 355, 365, 371, 391, 395, 403, 407, 415, 427, 437, 445
Offset: 1

Author

Marina Ibrishimova, Aug 27 2016

Keywords

Comments

Conjecture: If n is the product of two odd primes p and q and p is equal to 3, then neither p nor q is in the trajectory of (p*q)+1 under the Collatz 3x+1 map (A014682). - Marina Ibrishimova, Aug 29 2016
If there were any multiples of three present in this sequence, then there would also be nontrivial cycles among Collatz-trajectories. It has been empirically checked that for the first 2^22 = 4194304 primes from p=2 to p=71378569, 3*p certainly is not included in this sequence. - Antti Karttunen, Aug 30 2016

Crossrefs

Subsequence of A046315.

Programs

  • JavaScript
    function isitCollatzProduct(p,q){var n=p*q;var cur=n+1;while(cur!=p&&cur!=q&&cur!=2){if(cur%2!=0){cur=3*cur+1}else{cur=cur/2}}if(cur==p||cur==q){return cur}else{return 0}}
    
  • Mathematica
    Select[Range[9, 450, 2], And[PrimeOmega@ # == 2, Function[w, Total@ Boole@ Map[MemberQ[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, Times @@ w + 1, # > 1 &], #] &, w] > 0]@ Flatten@ Apply[Table[#1, {#2}] &, FactorInteger@ #, {1}]] &] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    has(p,q)=my(t=p*q+1); while(t>2, t=if(t%2,3*t+1,t/2); if(t==p || t==q, return(1))); 0
    list(lim)=forprime(p=3,lim\3, forprime(q=3,min(lim\p,p), if(has(p,q), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Aug 27 2016

Extensions

Terms corrected by Charles R Greathouse IV, Aug 27 2016

A276260 Odd primes p such that p is in the trajectory of p+1 under the Collatz 3x+1 map (A014682).

Original entry on oeis.org

5, 13, 17, 53, 61, 107, 251, 283, 1367
Offset: 1

Author

Marina Ibrishimova, Aug 26 2016

Keywords

Comments

a(10) > 10^7 if it exists. - Felix Fröhlich, Aug 26 2016
a(10) > 10^9 if it exists. - Charles R Greathouse IV, Aug 26 2016
a(10) > 10^12 if it exists. - Charles R Greathouse IV, Sep 07 2016

Crossrefs

Programs

  • JavaScript
    function isit_collatz_prime(p)
    {
        var cur = p+1;
        while(cur != p && cur != 2)
        {
           if(cur%2!=0)
           {
               cur = 3*cur + 1;
           }else
           {
            cur = cur/2;
           }
        }
        if(cur === p ){return "p is a Collatz prime";}
        else {return "p is not a Collatz prime";}
    }
    
  • Mathematica
    Select[Prime@ Range[2, 10^5], MemberQ[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, # + 1, # > 1 &], #] &] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    next_collatz_iteration(n) = if(n%2==1, return(3*n+1), return(n/2))
    is(n) = if(n%2==1 && ispseudoprime(n), my(k=n+1); while(k > 1, k=next_collatz_iteration(k); if(k==n, return(1)))); 0 \\ Felix Fröhlich, Aug 26 2016
    
  • PARI
    has(n)=my(k=n+1); k>>=valuation(k,2); while(k>1, k+=(k+1)>>1; k>>=valuation(k,2); if(k==n, return(1))); 0
    forprime(p=3,1e9, if(has(p), print1(p", "))) \\ Charles R Greathouse IV, Aug 26 2016

A269452 phi(A157352(n)), n >= 1, where phi is Euler's totient function A000010, and A157352 gives the products of two distinct safe primes.

Original entry on oeis.org

24, 40, 60, 88, 132, 184, 220, 232, 276, 348, 328, 460, 424, 492, 580, 636, 664, 712, 820, 1012, 904, 996, 1060, 1068, 1048, 1276, 1356, 1384, 1432, 1660, 1572, 1804, 1528, 1780, 1864, 1912, 2076, 2332, 2260, 2148, 2008, 2292, 2668, 2248, 2620, 2344, 2796, 2868, 3012, 2872, 3460, 3652, 3772, 3372
Offset: 1

Author

Marina Ibrishimova, Feb 27 2016

Keywords

Comments

phi(p*q) = (p-1)(q-1) where p, q are distinct safe primes.
2^(a(n)/2) == 1 (mod A157352(n)). For the reference see a comment on A269454. - Wolfdieter Lang, Mar 31 2016

Crossrefs

Programs

  • Mathematica
    EulerPhi /@ Select[Select[Range@ 4000, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(# - 1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* Michael De Vlieger, Feb 28 2016 *)

Formula

a(n) = phi(A157352(n)), n >= 1.

Extensions

More terms from Michael De Vlieger, Feb 28 2016

A269454 Safe primes that are not congruent to -1 mod 8.

Original entry on oeis.org

5, 11, 59, 83, 107, 179, 227, 347, 467, 563, 587, 1019, 1187, 1283, 1307, 1523, 1619, 1907, 2027, 2099, 2459, 2579, 2819, 2963, 3203, 3467, 3779, 3803, 3947, 4139, 4259, 4283, 4547, 4787, 5099, 5387, 5483, 5507, 5939, 6659, 6779, 6827, 6899, 7187, 7523
Offset: 1

Author

Marina Ibrishimova, Feb 27 2016

Keywords

Comments

For safe primes see A005385.
Conjecture: If p and q are two distinct safe primes not congruent to -1 mod 8 then the order of 2 mod p*q is phi(p*q)/2. For phi see A000010.
Note: The order of 2 mod p*q is the smallest positive integer k such that 2^k = 1 mod p*q. See Rosen's definition of the order of an integer on p.334. Also, k is smaller than or equal to phi(p*q)/2 for all products of distinct odd primes p and q. See Cohen's Prop. 1.4.2 on p. 25.
2^(phi(p*q)/2) == 1 (mod p*q) for all distinct odd primes p and q. See Nagell's corollary to Theorem 64, p. 106, with a = 2 and n = p*q. - Wolfdieter Lang, Mar 31 2016

References

  • Henri Cohen, Graduate Texts In Mathematics: A Course in Computational Algebraic Number Theory, Springer, 2000, p. 25
  • Trygve Nagell, Introduction to Number Theory, Chelsea, 1964, p. 106.
  • Kenneth H. Rosen, Elementary Number Theory And Its Applications, AT&T Laboratories, 2005, p. 334

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(8000) | IsPrime((p-1) div 2) and not p mod 8 eq 7]; // Vincenzo Librandi, Feb 28 2016
    
  • Mathematica
    Select[Prime@ Range@ 1000, And[PrimeQ[(# - 1)/2], MemberQ[Range[0, 6], Mod[#, 8]]] &] (* Michael De Vlieger, Feb 28 2016 *)
  • PARI
    lista(nn) = {forprime(p=3, nn, if (((p % 8) != 7) && isprime((p-1)/2), print1(p, ", ")););} \\ Michel Marcus, Mar 24 2016

Formula

A005385 without its intersection with A007522.

Extensions

More terms from Vincenzo Librandi, Feb 28 2016

A269453 The order of 2 mod m when m is the product of two distinct safe primes.

Original entry on oeis.org

12, 20, 30, 44, 33, 92, 110, 116, 69, 174, 164, 230, 212, 246, 290, 318, 332, 356, 410, 253, 452, 249, 530, 534, 524, 638, 678, 692, 716, 830, 393, 902, 764, 890, 932, 956, 1038, 1166, 1130, 537, 1004, 573, 1334, 1124, 1310, 1172, 1398, 717, 753, 1436, 1730, 913, 1886, 1686, 1790
Offset: 1

Author

Marina Ibrishimova, Feb 27 2016

Keywords

Comments

The smallest positive integer k for which 2^k == 1 (mod m) where m = p*q with p, q distinct safe primes.

Crossrefs

Programs

  • Mathematica
    MultiplicativeOrder[2, #] & /@ Select[Select[Range@ 4200, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(# - 1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* Michael De Vlieger, Feb 28 2016 *)

Formula

a(n) is the order of 2 modulo A157352(n). - Wolfdieter Lang, Mar 31 2016

Extensions

More terms from Michael De Vlieger, Feb 28 2016