A268923 All odd primes a(n) such that for all odd primes q smaller than a(n) the order of 2 modulo a(n)*q is a proper divisor of phi(a(n)*q)/2. The totient function phi is given in A000010.
17, 31, 41, 43, 73, 89, 97, 109, 113, 127, 137, 151, 157, 193, 223, 229, 233, 241, 251, 257, 277, 281, 283, 307, 313, 331, 337, 353, 397, 401, 409, 431, 433, 439, 449, 457, 499, 521, 569, 571, 577, 593, 601, 617, 631, 641, 643, 673, 683, 691, 727, 733, 739, 761, 769, 809, 811, 857, 881, 911, 919
Offset: 1
Keywords
Examples
n=1: Order(2, 17*3) = 8, and 8 is a proper divisor of phi(17*3)/2 = 16; order(2, 17*5) = 8, and 8 is a proper divisor of phi(17*5)/2 = 32; order(2, 17*7) = 24, and 24 is a proper divisor of phi(17*7)/2 = 48; order(2, 17*11) = 40, and 40 is a proper divisor of phi(17*11)/2 = 80; order(2, 17*13) = 24, and 24 is a proper divisor of phi(17*13)/2 = 96.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1000
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Programs
-
Mathematica
Select[Prime@ Range[3, 157], Function[p, AllTrue[Prime@ Range[2, PrimePi@ p - 1], Function[q, With[{e = EulerPhi[p q]/2}, And[Divisible[e, #], # != e]] &@ MultiplicativeOrder[2, p q]]]]] (* Michael De Vlieger, Apr 01 2016, Version 10 *)
Extensions
More terms from Michael De Vlieger, Apr 01 2016
Comments