A269455 Number of Type I (singly-even) self-dual binary codes of length 2n.
1, 3, 15, 105, 2295, 75735, 4922775, 625192425, 163204759575, 83724041661975, 85817142703524375, 175667691114114395625, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375, 3168896498278970068411253452090715625, 207692645973961964120828372930661061284375, 27222898185745116523209337325140537285726884375, 7136346644902153570976711733098966146766874104484375, 3741493773415815389266667264411257664189964123617799515625
Offset: 1
Keywords
References
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, 2003, Page 366.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
Links
- Nathan J. Russell, Table of n, a(n) for n = 1..49
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- P. Gaborit, Tables of Self-Dual Codes
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
Programs
-
Mathematica
Table[ If[Mod[2 n, 8] == 0, Product[2^i + 1, {i, 1, n - 1}] - Product[2^i + 1, {i, 0, n - 2}] , Product[2^i + 1, {i, 1, n - 1}]], {n, 1, 10}] (* Nathan J. Russell, Mar 01 2016 *)
-
PARI
a(n) = if (2*n%8==0, prod(i=1, n-1, 2^i+1)-prod(i=0, n-2, 2^i+1), prod(i=1, n-1, 2^i+1)) vector(20, n, a(n)) \\ Colin Barker, Feb 28 2016
-
Python
for n in range(1,10): product1 = 1 for i in range(1,n-1 + 1): product1 *= (2**i+1) if (2*n)%8 == 0: product2 = 1 for i in range(n-2 + 1): product2 *= (2**i+1) print(product1 - product2) else: print(product1)
Formula
From Nathan J. Russell, Mar 01 2016: (Start)
If 2n = 0 MOD 8 then a(n) = prod_(2^i+1, i=1,...,n-1) - prod_(2^i+1, i=0,...,n-2);
If 2n != 0 MOD 8 then a(n) = prod_(2^i+1, i=1,...,n-1).
If 2n != 0 MOD 8 then a(n) = A028362(n).
(End)
Extensions
a(20) corrected by Andrew Howroyd, Feb 22 2018
Comments