A269461 Number of length-n 0..2 arrays with no repeated value equal to the previous repeated value.
3, 9, 24, 66, 174, 462, 1206, 3150, 8166, 21150, 54582, 140718, 362118, 931134, 2391894, 6141006, 15757734, 40420062, 103647606, 265721070, 681097926, 1745555070, 4473092502, 11461604238, 29366557158, 75238139934, 192754700214
Offset: 1
Keywords
Examples
Some solutions for n=9: ..1. .1. .0. .2. .1. .0. .1. .2. .2. .1. .1. .0. .2. .2. .0. .2 ..1. .2. .1. .2. .2. .1. .0. .1. .1. .0. .1. .2. .0. .1. .1. .1 ..0. .2. .2. .1. .1. .2. .1. .1. .0. .0. .0. .1. .1. .1. .0. .1 ..2. .0. .2. .2. .2. .2. .2. .0. .0. .1. .2. .2. .1. .0. .1. .2 ..2. .1. .0. .0. .0. .1. .2. .2. .2. .2. .0. .0. .2. .0. .0. .0 ..1. .0. .2. .1. .1. .0. .0. .2. .1. .2. .0. .1. .1. .2. .2. .0 ..2. .1. .1. .1. .0. .2. .2. .1. .1. .0. .1. .0. .0. .2. .1. .2 ..0. .1. .2. .0. .0. .1. .1. .0. .0. .2. .2. .1. .2. .1. .1. .2 ..1. .0. .1. .0. .1. .0. .0. .1. .1. .1. .2. .0. .0. .1. .2. .0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A269467.
Formula
Empirical: a(n) = 3*a(n-1) + 2*a(n-2) - 8*a(n-3).
Conjectures from Colin Barker, Mar 21 2018: (Start)
G.f.: 3*x*(1 - 3*x^2) / ((1 - 2*x)*(1 - x - 4*x^2)).
a(n) = 2^(-4-n)*(-51*4^(1+n) + (255-57*sqrt(17))*(1-sqrt(17))^n + 3*(1+sqrt(17))^n*(85+19*sqrt(17))) / 17.
(End)
Comments