cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269473 a(n) is the number of rooted 2n-face triangulations in an orientable surface of genus 1.

Original entry on oeis.org

1, 28, 664, 14912, 326496, 7048192, 150820608, 3208396800, 67968706048, 1435486650368, 30246600953856, 636154755940352, 13360333295173632, 280258138588839936, 5873204471357374464, 122980760637407232000, 2573349967992101142528, 53815038103588370907136
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 27 2016

Keywords

Crossrefs

Column k=1 of A266240.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[Sqrt[1728 - 432/x + (30*Sqrt[1 + 48*x] - 54)/x^2 + (Sqrt[1 + 48*x] - 1)/x^3]/864, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jul 28 2018 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = {
      my(f2 = factorial2);
      4^(n-1)*f2(n-1)/n! * sum(k=0, n-1, 3^k * f2(3*n-2*k-2)/(n-1-k)!);
    };
    \\ test: y='x*Ser(vector(303, n, a(n))); 0 == 2*(432*x^2 - 1)^2*y^3 + (432*x^2 - 1)*y^2 + 54*x^2*y + x^2
    \\ Gheorghe Coserea, Jul 27 2018

Formula

Recurrence: (n-1)*n*(15*n - 46)*a(n) = 48*(270*n^3 - 1503*n^2 + 2478*n - 1280)*a(n-2) - 20736*(3*n - 10)*(3*n - 8)*(15*n - 16)*a(n-4).
a(n) ~ 2^(2*n-3) * 3^(3*n/2).
From Gheorghe Coserea, Jul 27 2018: (Start)
a(n+1) = 4^n * n!!/(n+1)! * Sum_{k=0..n} 3^k*(3*n-2*k+1)!!/(n-k)!. (see Krasko link)
G.f. y(x) satisfies:
0 = 2*(432*x^2 - 1)^2*y^3 + (432*x^2 - 1)*y^2 + 54*x^2*y + x^2.
0 = x*(432*x^2 - 1)*(108*x^2 + 1)*deriv(y,x) + 2*(432*x^2 - 1)*(648*x^2 + 1)*y^2 + (31104*x^4 + 1116*x^2 + 1)*y + 30*x^2.
0 = (5184*x^2 - 7)*(432*x^2 - 1)^2*y''' + 1296*x*(432*x^2 - 1)*(12096*x^2 - 13)*y'' + 48*(199314432*x^4 - 479088*x^2 + 581)*y' + 663552*x*(2592*x^2 - 11)*y.
(End)