A269537 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than one.
2, 3, 4, 4, 9, 6, 5, 16, 24, 10, 6, 25, 60, 64, 14, 7, 36, 120, 222, 164, 22, 8, 49, 210, 568, 804, 418, 30, 9, 64, 336, 1210, 2648, 2878, 1048, 46, 10, 81, 504, 2280, 6890, 12214, 10192, 2614, 62, 11, 100, 720, 3934, 15324, 38878, 55836, 35812, 6468, 94, 12, 121
Offset: 1
Examples
Some solutions for n=6 k=4 ..2. .4. .4. .0. .3. .0. .0. .3. .1. .2. .2. .3. .2. .1. .4. .0 ..4. .3. .1. .3. .2. .2. .3. .0. .2. .0. .1. .0. .1. .3. .0. .2 ..3. .2. .0. .1. .1. .4. .1. .0. .3. .3. .3. .1. .3. .0. .4. .2 ..2. .1. .1. .2. .1. .0. .3. .2. .3. .4. .1. .0. .4. .2. .1. .4 ..0. .3. .1. .2. .0. .1. .1. .4. .2. .1. .1. .1. .1. .4. .1. .0 ..2. .1. .2. .4. .2. .1. .2. .0. .0. .2. .2. .2. .3. .2. .4. .4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) -2*a(n-3)
k=2: a(n) = 4*a(n-1) -a(n-2) -10*a(n-3) +6*a(n-4) +4*a(n-5)
k=3: a(n) = 7*a(n-1) -9*a(n-2) -23*a(n-3) +31*a(n-4) +33*a(n-5)
k=4: a(n) = 14*a(n-1) -65*a(n-2) +80*a(n-3) +163*a(n-4) -280*a(n-5) -208*a(n-6)
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 2*n
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 6*n^2 + 6*n - 2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 12*n^3 + 22*n^2 - 18*n + 4
Comments