cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269592 Digits of one of the two 5-adic integers sqrt(-4). Here the ones related to A269590.

Original entry on oeis.org

4, 2, 4, 2, 1, 4, 0, 2, 1, 1, 0, 0, 1, 3, 3, 1, 0, 4, 1, 3, 2, 4, 1, 3, 3, 4, 3, 3, 3, 3, 2, 1, 3, 3, 3, 3, 0, 1, 2, 2, 1, 2, 0, 0, 4, 1, 3, 0, 4, 1, 1, 3, 4, 3, 1, 1, 2, 1, 1, 1, 0, 0, 1, 3, 1, 3
Offset: 0

Views

Author

Wolfdieter Lang, Mar 02 2016

Keywords

Comments

This is the scaled first difference sequence of A269590.
The digits of the other 5-adic integer sqrt(-4), are given in A269591. See also A268922 for the two 5-adic numbers -u and u.
a(n) is the unique solution of the linear congruence 2*A269590(n)*a(n) + A269594(n) == 0 (mod 5), n>=1. Therefore only the values 0, 1, 2, 3 and 4 appear. See the Nagell reference given in A268922, eq. (6) on p. 86, adapted to this case. a(0) = 4 follows from the formula given below.

Examples

			a(4) = -212*(2*364)^3 (mod 5) = -2*(2*(-1))^3 (mod 5) = 1.
		

Crossrefs

Cf. A269590, A269591 (companion), A269594.

Programs

  • PARI
    a(n) = truncate(-sqrt(-4+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 04 2016

Formula

a(n) = (b(n+1) - b(n))/5^n, n>=0, with b(n) = A269590(n), n >= 0.
a(n) = -A269594(n)*(2*A269590(n))^3 (mod 5), n >= 1. Solution of the linear congruence see, e.g., Nagell, Theorem 38 pp. 77-78.
A269590(n+1) = sum(a(k)*5^k, k=0..n), n>=0.
a(n) = 4 - A269591(n) if n > 0 and a(0) = 5 - A269591(0) = 5-4 = 1. - Michel Marcus, Mar 31 2016