A269596 Irregular triangle giving in row n the smaller of the two roots x1 of x^2 + b modulo prime(n) from {0, 1, ..., prime(n)-1} corresponding to b from row n of A269595.
1, 1, 2, 1, 2, 3, 1, 3, 4, 2, 5, 1, 5, 6, 3, 2, 4, 1, 4, 7, 8, 3, 5, 2, 6, 1, 6, 4, 7, 3, 8, 5, 9, 2, 1, 8, 4, 6, 9, 3, 10, 11, 2, 7, 5, 1, 12, 5, 13, 9, 14, 7, 4, 10, 3, 6, 8, 11, 2, 1
Offset: 1
Examples
The irregular triangle T(n, k) begins (P(n) stands here for prime(n)): n, P(n)\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1, 2: 1 2, 3: 1 3, 5: 2 1 4, 7: 2 3 1 5, 11: 3 4 2 5 1 6: 13: 5 6 3 2 4 1 7, 17: 4 7 8 3 5 2 6 1 8, 19: 6 4 7 3 8 5 9 2 1 9, 23: 8 4 6 9 3 10 11 2 7 5 1 10, 29: 12 5 13 9 14 7 4 10 3 6 8 11 2 1 ... Row n=7 (prime 17) is the permutation (in cycle notation) (1,4,3,8)(2,7,6) of {1, 2, ..., 8}.
Links
Programs
-
Mathematica
nn = 12; s = Table[Select[Range[Prime@ n - 1], JacobiSymbol[#, Prime@ n] == 1 &], {n, nn}]; t = Table[Prime@ n - s[[n, (Prime@ n - 1)/2 - k + 1]], {n, Length@ s}, {k, (Prime@ n - 1)/2}] /. {} -> {1}; Prepend[Table[SelectFirst[Range@ #, Function[x, Mod[x^2 + t[[n, k]], #] == 0]] &@ Prime@ n, {n, 2, Length@ t}, {k, (Prime@ n - 1)/2}], {1}] // Flatten (* Michael De Vlieger, Apr 04 2016, Version 10 *)
Comments