A269605 Number of length-n 0..7 arrays with no repeated value differing from the previous repeated value by one or less.
8, 64, 504, 3962, 31024, 242226, 1886252, 14654952, 113629480, 879470154, 6796127732, 52443005888, 404170590152, 3111359345068, 23927329547328, 183840499514208, 1411335451447128, 10826702362761906, 82998453154738884
Offset: 1
Keywords
Examples
Some solutions for n=5 ..7. .4. .1. .3. .5. .2. .3. .4. .0. .1. .2. .3. .1. .5. .1. .0 ..0. .1. .2. .3. .6. .0. .6. .7. .2. .2. .4. .2. .0. .6. .5. .3 ..1. .1. .5. .7. .0. .6. .6. .5. .0. .6. .4. .1. .5. .0. .1. .5 ..7. .2. .2. .1. .6. .5. .0. .6. .0. .2. .2. .1. .6. .4. .5. .0 ..7. .0. .3. .4. .5. .0. .7. .6. .4. .6. .0. .2. .3. .2. .7. .0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical recursion
Crossrefs
Cf. A269606.
Programs
-
Maple
with(LinearAlgebra): T:= Matrix(72,72): for x from 0 to 7 do for v from 0 to 8 do i:= 1 + x + 8*v; for y in {$0..7} minus {x} do T[i,1+y+8*v]:= 1; od: if abs(x-v) > 1 or v=8 then T[i,1+x+8*x]:= 1 fi od od: u:= Vector([0$64,1$8]): v:= Vector(72,1): Tv[1]:= v: for n from 2 to 50 do Tv[n]:= T . Tv[n-1] od: seq(u^%T . Tv[n], n=1..50); # Robert Israel, Jan 24 2019
Formula
Empirical: a(n) = 31*a(n-1) -353*a(n-2) +1601*a(n-3) -435*a(n-4) -14505*a(n-5) +7118*a(n-6) +65542*a(n-7) +66279*a(n-8) +19971*a(n-9)
Empirical formula verified: see link. - Robert Israel, Jan 24 2019
Comments