cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269611 Decimal expansion of Sum_{n>=1} (sin(Pi/n))^2.

Original entry on oeis.org

4, 3, 2, 2, 6, 7, 5, 0, 4, 3, 2, 3, 9, 6, 3, 7, 1, 4, 1, 1, 1, 8, 5, 5, 6, 0, 6, 3, 4, 4, 0, 4, 2, 8, 0, 9, 2, 0, 7, 8, 5, 2, 1, 7, 3, 5, 5, 0, 5, 3, 1, 9, 5, 5, 5, 2, 5, 6, 9, 9, 9, 6, 5, 9, 9, 2, 3, 0, 0, 3, 0, 1, 0, 6, 1, 4, 8, 2, 3, 0, 7, 9, 8, 4, 1, 1, 0, 7, 7, 0, 5, 8, 5, 1, 5, 0, 2, 6, 3, 5, 0, 8, 1, 4, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2016

Keywords

Examples

			4.32267504323963714111855606344042809207852173550531955525699965992300301...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((sin(Pi/n))^2, n=1..infinity), 120);
  • Mathematica
    RealDigits[NSum[Sin[Pi/n]^2, {n, 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 10000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]][[1]]
  • PARI
    default(realprecision,120); sumpos(n=1, (sin(Pi/n))^2)

Formula

Equals (1/2) * Sum_{n>=1} (1 - cos(2*Pi/n)).
Equals Sum_{k>=1} (-1)^(k+1) * 2^(2*k-1) * Pi^(2*k) * Zeta(2*k) / (2*k)!, where Zeta is the Riemann zeta function.
Equals Sum_{k>=1} 2^(4*k-2) * Pi^(4*k) * B(2*k) / (2*k)!^2, where B(n) is the Bernoulli number A027641(n)/A027642(n).