cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269640 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.

Original entry on oeis.org

2, 3, 4, 4, 9, 6, 5, 16, 24, 9, 6, 25, 60, 63, 12, 7, 36, 120, 221, 159, 16, 8, 49, 210, 567, 796, 396, 20, 9, 64, 336, 1209, 2637, 2828, 969, 25, 10, 81, 504, 2279, 6876, 12125, 9928, 2349, 30, 11, 100, 720, 3933, 15307, 38738, 55225, 34537, 5640, 36, 12, 121, 990
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2016

Keywords

Comments

Table starts
..2.....3......4.......5........6.........7.........8..........9.........10
..4.....9.....16......25.......36........49........64.........81........100
..6....24.....60.....120......210.......336.......504........720........990
..9....63....221.....567.....1209......2279......3933.......6351.......9737
.12...159....796....2637.....6876.....15307.....30444......55641......95212
.16...396...2828...12125....38738....101999....234080.....484673.....926390
.20...969...9928...55225...216528....675151...1789528....4200933....8974480
.25..2349..34537..249600..1202353...4443665..13613507...36254755...86609789
.30..5640.119236.1120868..6639294..29104549.103118640..311698647..833022466
.36.13455.409098.5006144.36486190.189818232.778158768.2670823421.7987993868

Examples

			Some solutions for n=6 k=4
..4. .2. .3. .4. .3. .0. .2. .4. .0. .3. .1. .0. .4. .1. .0. .3
..0. .3. .1. .2. .1. .0. .1. .3. .0. .4. .2. .2. .1. .3. .3. .2
..3. .1. .2. .4. .4. .3. .4. .0. .1. .3. .0. .1. .0. .2. .0. .4
..2. .4. .0. .3. .2. .1. .1. .2. .2. .0. .1. .0. .3. .0. .3. .0
..1. .1. .2. .3. .2. .2. .3. .0. .4. .3. .0. .3. .2. .4. .1. .1
..0. .4. .3. .0. .4. .1. .3. .2. .2. .0. .2. .0. .4. .1. .2. .1
		

Crossrefs

Column 1 is A002620(n+2).
Column 2 is A268938.
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A007531(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
k=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3)
k=3: a(n) = 9*a(n-1) -21*a(n-2) -19*a(n-3) +93*a(n-4) +27*a(n-5) -133*a(n-6) -87*a(n-7)
k=4: [order 7]
k=5: [order 13]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n - 1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 5*n + 1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 12*n^2 + 9*n - 7 for n>2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 22*n^3 + 28*n^2 - 37*n + 13 for n>2