A269640 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by other than plus two or minus 1.
2, 3, 4, 4, 9, 6, 5, 16, 24, 9, 6, 25, 60, 63, 12, 7, 36, 120, 221, 159, 16, 8, 49, 210, 567, 796, 396, 20, 9, 64, 336, 1209, 2637, 2828, 969, 25, 10, 81, 504, 2279, 6876, 12125, 9928, 2349, 30, 11, 100, 720, 3933, 15307, 38738, 55225, 34537, 5640, 36, 12, 121, 990
Offset: 1
Examples
Some solutions for n=6 k=4 ..4. .2. .3. .4. .3. .0. .2. .4. .0. .3. .1. .0. .4. .1. .0. .3 ..0. .3. .1. .2. .1. .0. .1. .3. .0. .4. .2. .2. .1. .3. .3. .2 ..3. .1. .2. .4. .4. .3. .4. .0. .1. .3. .0. .1. .0. .2. .0. .4 ..2. .4. .0. .3. .2. .1. .1. .2. .2. .0. .1. .0. .3. .0. .3. .0 ..1. .1. .2. .3. .2. .2. .3. .0. .4. .3. .0. .3. .2. .4. .1. .1 ..0. .4. .3. .0. .4. .1. .3. .2. .2. .0. .2. .0. .4. .1. .2. .1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
k=2: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3)
k=3: a(n) = 9*a(n-1) -21*a(n-2) -19*a(n-3) +93*a(n-4) +27*a(n-5) -133*a(n-6) -87*a(n-7)
k=4: [order 7]
k=5: [order 13]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 2*n
n=4: a(n) = n^4 + 4*n^3 + 3*n^2 + 2*n - 1
n=5: a(n) = n^5 + 5*n^4 + 4*n^3 + 6*n^2 - 5*n + 1
n=6: a(n) = n^6 + 6*n^5 + 5*n^4 + 12*n^3 - 12*n^2 + 9*n - 7 for n>2
n=7: a(n) = n^7 + 7*n^6 + 6*n^5 + 20*n^4 - 22*n^3 + 28*n^2 - 37*n + 13 for n>2
Comments