A269699 Irregular triangle read by rows: T(n, k) is the number of k-element proper ideals of the n-dimensional Boolean lattice, with 0 < k < 2^n.
1, 1, 2, 1, 1, 3, 3, 4, 3, 3, 1, 1, 4, 6, 10, 13, 18, 19, 24, 19, 18, 13, 10, 6, 4, 1, 1, 5, 10, 20, 35, 61, 95, 155, 215, 310, 387, 470, 530, 580, 605, 621, 605, 580, 530, 470, 387, 310, 215, 155, 95, 61, 35, 20, 10, 5, 1, 1, 6, 15, 35, 75, 156, 306, 605, 1110, 2045, 3512, 5913, 9415
Offset: 1
Examples
For row n = 3, the k-element proper ideals are the down-sets of the following antichains: T(3, 1) = 1: [{}]; T(3, 2) = 3: [{0}], [{1}], [{2}]; T(3, 3) = 3: [{0},{1}], [{0},{2}], [{1},{2}]; T(3, 4) = 4: [{0,1}], [{0,2}], [{1,2}], [{0},{1},{2}]; T(3, 5) = 3: [{0,1},{2}], [{0,2},{1}], [{1,2},{0}]; T(3, 6) = 3: [{0,1},{0,2}], [{0,1},{1,2}], [{0,2},{1,2}]; T(3, 7) = 1: [{0,1},{0,2},{1,2}]. E.g., the 5-element down-set of [{0,1},{2}] is [{},{0},{1},{2},{0,1}]. The table begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 1 2 1 2 1 3 1 3 3 4 3 3 1 4 1 4 6 10 13 18 19 24 19 18 13 10 6 4 1 5 1 5 10 20 35 61 95 155 215 310 387 470 530 580 605 621 605 ...
Links
- Danny Rorabaugh and Suresh Govindarajan, Table of n, a(n) for n = 1..279
- George Markowsky, The level polynomials of the free distributive lattices, Discrete Math., 29 (1980), 275-285.
- Wikipedia, Boolean algebra and Ideal.
Crossrefs
Programs
-
Sage
# Returns row n. def T(n): B = posets.BooleanLattice(n) t = [0]*(2^n + 1) for A in B.antichains(): t[len(B.order_ideal(A))] += 1 return t[1:-1]
Comments