cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269699 Irregular triangle read by rows: T(n, k) is the number of k-element proper ideals of the n-dimensional Boolean lattice, with 0 < k < 2^n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 3, 4, 3, 3, 1, 1, 4, 6, 10, 13, 18, 19, 24, 19, 18, 13, 10, 6, 4, 1, 1, 5, 10, 20, 35, 61, 95, 155, 215, 310, 387, 470, 530, 580, 605, 621, 605, 580, 530, 470, 387, 310, 215, 155, 95, 61, 35, 20, 10, 5, 1, 1, 6, 15, 35, 75, 156, 306, 605, 1110, 2045, 3512, 5913, 9415
Offset: 1

Views

Author

Danny Rorabaugh, Mar 03 2016

Keywords

Comments

The set of maximal elements of an ideal is an antichain; conversely, the down-set of a nonempty antichain is an ideal. The down-set of the top element of the n-dimensional Boolean lattice contains all 2^n elements of the lattice, and thus is not a proper ideal.
Empirically, the rows are unimodal.
By the Markowsky paper, T(n, k) = T(n, 2^n - k).
Also, T(n,k) is the number of n-dimensional Ferrers diagrams with k nodes (i.e., (n-1)-dimensional partitions) that fit into an n-dimensional hypercube of side 2 (i.e., a Boolean or binary hupercube). T(n, k) = T(n, 2^n - k) follows from the map that takes a Ferrers diagram to its complement in the box. - Suresh Govindarajan, Apr 10 2016

Examples

			For row n = 3, the k-element proper ideals are the down-sets of the following antichains:
T(3, 1) = 1: [{}];
T(3, 2) = 3: [{0}], [{1}], [{2}];
T(3, 3) = 3: [{0},{1}], [{0},{2}], [{1},{2}];
T(3, 4) = 4: [{0,1}], [{0,2}], [{1,2}], [{0},{1},{2}];
T(3, 5) = 3: [{0,1},{2}], [{0,2},{1}], [{1,2},{0}];
T(3, 6) = 3: [{0,1},{0,2}], [{0,1},{1,2}], [{0,2},{1,2}];
T(3, 7) = 1: [{0,1},{0,2},{1,2}].
E.g., the 5-element down-set of [{0,1},{2}] is [{},{0},{1},{2},{0,1}].
The table begins:
n\k 1 2  3  4  5  6  7   8   9  10  11  12  13  14  15  16  17
1   1
2   1 2  1
3   1 3  3  4  3  3  1
4   1 4  6 10 13 18 19  24  19  18  13  10   6   4   1
5   1 5 10 20 35 61 95 155 215 310 387 470 530 580 605 621 605 ...
		

Crossrefs

Columns are: A000012 (k = 1), A000027 (k = 2), A000217 (k = 3), A000292 (k = 4), A095661 (k = 5).
Cf. A007153 (row sums), A007318, A059119.

Programs

  • Sage
    # Returns row n.
    def T(n):
      B = posets.BooleanLattice(n)
      t = [0]*(2^n + 1)
      for A in B.antichains():
        t[len(B.order_ideal(A))] += 1
      return t[1:-1]