A269701 Cyclic Fibonacci sequence, restricted to maximum=6.
0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1
Offset: 0
Examples
For n = 6; F(5) + F(4) equals 8 then F(6) = 8 - 6 = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Erlang
fibocy(1) -> 1; fibocy(2) -> 1; fibocy(N) when N > 1 -> Tmp = fibocy(N-1) + fibocy(N-2), if Tmp > 6 -> Tmp - 6; true -> Tmp end.
-
Maple
A269701 := proc(n) option remember; if n <=5 then combinat[fibonacci](n) ; else a := procname(n-1)+procname(n-2) ; if a > 6 then a-6; else a; end if; end if; end proc: # R. J. Mathar, Apr 16 2016
-
Mathematica
Table[Mod[Fibonacci[n], 6], {n, 100}] /. 0 -> 6 (* Alonso del Arte, Mar 28 2016 *) PadRight[{0},120,{6,1,1,2,3,5,2,1,3,4,1,5,6,5,5,4,3,1,4,5,3,2,5,1}] (* Harvey P. Dale, May 13 2019 *)
Formula
F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1 and F(n) = F(n-1) + F(n-2) - 6 if F(n-1) + F(n-2) > 6.
G.f.: ( -x *(1 +x +2*x^2 +3*x^3 +5*x^4 +2*x^5 +x^6 +3*x^7 +4*x^8 +x^9 +5*x^10 +6*x^11 +5*x^12 +5*x^13 +4*x^14 +3*x^15 +x^16 +4*x^17 +5*x^18 +3*x^19 +2*x^20 +5*x^21 +x^22 +6*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Apr 16 2016
Comments