A272353 Numbers n such that the number of divisors of n+1 divides n and the number of divisors of n divides n+1.
3, 15, 1023, 6399, 10815, 15375, 26895, 53823, 55695, 65535, 80655, 107583, 118335, 262143, 309135, 440895, 614655, 633615, 817215, 891135, 1236543, 1784895, 2676495, 2715903, 2849343, 2985983, 3182655, 3225615, 3268863, 4194303, 4326399, 4343055, 4596735, 5053503
Offset: 1
Keywords
Examples
15 is a term because the number of divisors of 16=15+1, which is 5, divides 15, and the number of divisors of 15, which is 4, divides 16.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..2500
Crossrefs
Programs
-
Maple
select(t -> (t+1) mod numtheory:-tau(t) = 0 and t mod numtheory:-tau(t+1) = 0, [$1..10^6]); # Robert Israel, May 09 2016
-
Mathematica
lst={}; Do[ If[ Divisible[n, DivisorSigma[0, n+1]]&&Divisible[n+1, DivisorSigma[0, n]], AppendTo[lst, n]], {n, 7000000}]; lst Select[Range[7000000], Divisible[#, DivisorSigma[0, # + 1]] && Divisible[# + 1, DivisorSigma[0, #]] &]
-
PARI
for(n=1, 7000000, (n%numdiv(n+1)==0) && ((n+1)%numdiv(n)==0)&& print1(n ", "))
Comments