cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269799 Number of vertices of the fractional perfect matching polytope for the complete graph on n vertices.

Original entry on oeis.org

0, 1, 1, 3, 22, 25, 717, 1057, 39196, 98829
Offset: 1

Views

Author

Pontus von Brömssen, Mar 05 2016

Keywords

Comments

The fractional perfect matching polytope of a graph is the set of nonnegative edge weights such that the sum of the weights of the edges incident with any given vertex equals 1.
Sequence up to n=10 computed with PORTA (see links) by Pontus von Brömssen in December 2010.
a(n) equals the number of facets of the polytope P_n defined in Eickmeyer and Yoshida (2008), at least up to n=10.

Examples

			For n=4 the fractional perfect matching polytope is the convex hull of the 3 perfect matchings of K_4, so a(4)=3. For n=6, in addition to the 15 perfect matchings of K_6, the 10 pairs of disjoint triangles with edge weights 1/2 are vertices of the polytope, so a(6)=25.
		

Crossrefs

Cf. A123023.