cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269800 Convolution of A000107 and A027852.

Original entry on oeis.org

0, 0, 1, 3, 10, 30, 91, 268, 790, 2308, 6737, 19609, 57044, 165796, 481823, 1400028, 4068577, 11825459, 34380152, 99981942, 290854486, 846397344, 2463892294, 7174933683, 20900764811, 60904875999, 177535250815, 517673673674, 1509950058629, 4405547856394, 12857716906991
Offset: 0

Views

Author

R. J. Mathar, Mar 05 2016

Keywords

Comments

This counts the arrangements of n nested circles in the plane where one pair of circles touches. a(2)=1 because the (only) pair must touch. a(3)=3 because either the third circle circumscribes the touching pair or is inside one of the touching circles or is entirely separated from the touching pair.

Crossrefs

Programs

  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] =Sum[Sum[d b[d], {d, Divisors[j]}] b[n - j], {j, 1, n - 1}]/(n - 1);
    a7[n_] := a7[n] = b[n] + Sum[ a7[n - i] b[i], {i, 1, n - 1}];
    c[n_] := c[n] = If[n <= 1, n, (Sum[Sum[d c[d], {d, Divisors[j]}] c[n - j], {j, 1, n - 1}])/(n - 1)];
    a52[n_] := (Sum[c[i] c[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, c[n/2], 0])/2;
    a[n_] := Sum[a7[k] a52[n - k + 1], {k, 0, n + 1}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 16 2018, after Alois P. Heinz in A000107 and A027852 *)