A269809 Numbers having harmonic fractility A270000(n) = 6.
77, 95, 131, 145, 154, 190, 203, 209, 231, 247, 262, 275, 285, 290, 299, 308, 329, 377, 380, 393, 406, 418, 431, 435, 437, 443, 462, 494, 524, 529, 539, 545, 550, 559, 570, 580, 595, 598, 609, 616, 627, 658, 685, 689, 693, 705, 737, 741, 754, 760, 767, 786
Offset: 1
Keywords
Examples
Nested interval sequences NI(k/m) for m = 77: The 6 equivalence classes are represented by NI(1/77) = (77, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...), NI(2/77) = (38, 2, 1, 1, 1, 1, 2, 3, 8, 2, 2, 1, 1, 1, 1, 2, 3, 8, 2, 2, 1, ...) (period length 9), NI(3/77) = (25, 3, 1, 1, 1, 5, 15, 1, 5, 15, 1, 5, 15, 1, 5, 15, 1, 5, 15, ...), NI(8/77) = (9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, 2, 9, ...), NI(10/77) = (7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...), NI(14/77) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...). For example, N(4/77) = (19, 1, 2, 1, 1, 1, 15, 1, 5, 15, 1, 5, ...) is equivalent to NI(3/77), and NI(6/77) = (12, 6, 1, 11, 1, 1, 1, ...) is equivalent to NI(1/77). - _M. F. Hasler_, Nov 05 2018
Links
- Jack W Grahl, Table of n, a(n) for n = 1..73
- Peter J. C. Moses, Clark Kimberling, Nested interval sequences of positive real numbers, Integers 17 (2017), #A46.
Crossrefs
Programs
-
PARI
select( is_A269809(n)=A270000(n)==6, [1..800]) \\ M. F. Hasler, Nov 05 2018
Extensions
More terms from Jack W Grahl, Jun 28 2018
Edited by M. F. Hasler, Nov 05 2018
Comments