A269844 Primes equal to the sum of a pair of consecutive integers which are both squarefree.
5, 11, 13, 29, 43, 59, 61, 67, 83, 131, 139, 157, 173, 211, 227, 229, 277, 283, 317, 331, 347, 373, 389, 419, 421, 443, 461, 509, 547, 563, 571, 619, 643, 653, 659, 661, 691, 709, 733, 787, 797, 821, 853, 859, 877, 907, 941, 947, 997, 1019, 1021, 1069, 1091, 1093, 1109, 1123, 1163, 1181, 1213
Offset: 1
Examples
277 = 138 + 139 = 2*3*23 + 139 is in the sequence since both terms are squarefree. 281 = 140 + 141 = 2^2*5*7 + 3*47 is not in the sequence since the former term is divisible by 2^2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Bill McEachen, A269844_vs_A001122
Programs
-
Mathematica
Select[Prime@ Range[3, 200], PrimeOmega@ # == PrimeNu@ # &[# (# + 1)] &@ Floor[#/2] &] (* Michael De Vlieger, Mar 07 2016 *)
-
PARI
genit(maxx)={for(i5=3,maxx,n=prime(i5);a=factor(floor(n/2.));b=factor(ceil(n/2.));clear=1;for(j5=1,omega(floor(n/2.)),if(a[j5,2]<>1,clear=0)); for(j7=1,omega(ceil(n/2.)),if(b[j7,2]<>1,clear=0));if(clear>0,print1(n,",")));}
-
PARI
is(n)=isprime(n) && issquarefree(n\2) && issquarefree(n\2+1) \\ Charles R Greathouse IV, Jan 24 2018
-
PARI
list(lim)=my(v=List(),t=1); forfactored(k=3,(lim+1)\2, if(vecmax(k[2][,2])>1, t=0, ; if(t && isprime(t=2*k[1]-1), listput(v,t)); t=1)); Vec(v) \\ Charles R Greathouse IV, Jan 24 2018
Comments