cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A269862 Least monotonic left inverse of A269861.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 22, 22, 23, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 30, 31, 31, 32, 33, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 40, 41
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2016

Keywords

Comments

a(n) = number of terms of A269861 <= n.

Crossrefs

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; s = Select[Range@ 150, Xor[EvenQ@ f@ #, EvenQ@ #] &]; Table[Count[s, k_ /; k <= n], {n, 87}] (* Michael De Vlieger, Mar 17 2016 *)

Formula

a(1) = 0, for n > 1, a(n) = (A048673(n)-n reduced mod 2) + a(n-1).
Other identities. For all n >= 1:
a(A269861(n)) = n.

A270431 Numbers n such that A048673(n) and A064216(n) are of opposite parity.

Original entry on oeis.org

6, 7, 11, 14, 15, 18, 19, 21, 22, 23, 24, 28, 35, 38, 43, 44, 45, 46, 47, 51, 54, 55, 56, 57, 59, 60, 61, 63, 66, 67, 70, 71, 72, 73, 76, 78, 79, 83, 84, 86, 87, 88, 89, 91, 92, 94, 95, 96, 103, 107, 110, 112, 115, 118, 119, 122, 123, 127, 129, 131, 134, 135, 138, 140, 142, 143, 146, 150, 152, 153, 157, 158, 159, 162
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2016

Keywords

Comments

See comments in A270434.

Crossrefs

Complement: A270430.
Left inverse: A270433.
Cf. also A269861.

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; g[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; Select[Range@ 162, Xor[EvenQ@ f@ #, EvenQ@ g@ #] &] (* Michael De Vlieger, Mar 17 2016 *)

Formula

Other identities. For all n >= 1:
A270433(a(n)) = n.

A269860 Numbers n such that n and A048673(n) are of the same parity.

Original entry on oeis.org

1, 2, 3, 6, 8, 9, 11, 13, 18, 20, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 35, 37, 39, 46, 47, 49, 50, 54, 59, 60, 62, 66, 68, 69, 70, 71, 72, 74, 75, 76, 78, 80, 81, 83, 84, 85, 88, 89, 93, 94, 95, 96, 97, 98, 99, 104, 105, 107, 109, 111, 112, 116, 117, 118, 119, 121, 128, 131, 133, 138, 139, 141, 142, 143, 145, 147, 150
Offset: 1

Views

Author

Antti Karttunen, Mar 16 2016

Keywords

Comments

Union of odd terms of A246261 and even terms of A246263.

Crossrefs

Complement: A269861.
Cf. A048674 (a subsequence).
Cf. also A270430.

Programs

  • Mathematica
    f[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; Select[Range@ 150, Xor[EvenQ@ f@ #, OddQ@ #] &] (* Michael De Vlieger, Mar 17 2016 *)

A349573 a(n) = A048673(n) - n, where A048673(n) = (A003961(n)+1) / 2, and A003961(n) shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

0, 0, 0, 1, -1, 2, -1, 6, 4, 1, -4, 11, -4, 3, 3, 25, -7, 20, -7, 12, 7, -2, -8, 44, 0, 0, 36, 22, -13, 23, -12, 90, 0, -5, 4, 77, -16, -3, 4, 55, -19, 41, -19, 15, 43, -2, -20, 155, 12, 24, -3, 25, -23, 134, -9, 93, 1, -11, -28, 98, -27, -6, 75, 301, -5, 32, -31, 18, 4, 46, -34, 266, -33, -12, 48, 28, -5, 50, -37
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Crossrefs

Cf. A048674 (positions of zeros), A246351 (negative terms), A246281 (nonpositive terms), A246352 (nonnegative terms), A246282 (positive terms), A269860 (even terms), A269861 (odd terms).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; a[1] = 0; a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2 - n; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    A349573(n) = (A048673(n)-n);

Formula

a(n) = A048673(n) - n.
a(n) = Sum_{d|n, dA349571(n/d).
Showing 1-4 of 4 results.