cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A284867 Decimal expansion of Ai(0), where Ai is the Airy function of the first kind.

Original entry on oeis.org

3, 5, 5, 0, 2, 8, 0, 5, 3, 8, 8, 7, 8, 1, 7, 2, 3, 9, 2, 6, 0, 0, 6, 3, 1, 8, 6, 0, 0, 4, 1, 8, 3, 1, 7, 6, 3, 9, 7, 9, 7, 9, 1, 7, 4, 1, 9, 9, 1, 7, 7, 2, 4, 0, 5, 8, 3, 3, 2, 6, 5, 1, 0, 3, 0, 0, 8, 1, 0, 0, 4, 2, 4, 5, 0, 1, 2, 6, 7, 1, 2, 9, 5, 7, 1, 7, 4, 2, 4, 6, 0, 5, 4, 0, 4, 0, 2, 7, 1, 6, 8, 8, 4, 2, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 04 2017

Keywords

Examples

			0.35502805388781723926006318600418317639797917419917724058332651030081...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 56, page 559.

Crossrefs

Cf. A096714, A096715, A269892, A269893, A073006 (Gamma(2/3)), A284868 (Ai'(0)).

Programs

Formula

Ai(0) = 1/(3^(2/3)*Gamma(2/3)).

A284868 Decimal expansion of the derivative Ai'(0) (negated), where Ai is the Airy function of the first kind.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 4, 0, 3, 7, 9, 2, 8, 0, 6, 7, 9, 8, 4, 0, 5, 1, 8, 3, 5, 6, 0, 1, 8, 9, 2, 0, 3, 9, 6, 3, 4, 7, 9, 0, 9, 1, 1, 3, 8, 3, 5, 4, 9, 3, 4, 5, 8, 2, 2, 1, 0, 0, 0, 1, 8, 1, 3, 8, 5, 6, 1, 0, 2, 7, 7, 2, 6, 7, 6, 7, 9, 0, 2, 8, 0, 6, 5, 4, 1, 9, 6, 4, 0, 5, 8, 2, 7, 2, 7, 5, 3, 8, 4, 3, 1, 3, 3, 7, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 04 2017

Keywords

Examples

			-0.2588194037928067984051835601892039634790911383549345822100018138561...
		

Crossrefs

Cf. A096714, A096715, A269892, A269893, A073005 (Gamma(1/3)), A284867 (Ai(0)).

Programs

  • Mathematica
    RealDigits[AiryAi'[0], 10, 105][[1]]
  • PARI
    -derivnum(x=0,airy(x)[1]) \\ Charles R Greathouse IV, Apr 26 2019

Formula

Ai'(0) = -1/(3^(1/3)*Gamma(1/3)).

A269893 Decimal expansion of the value of the maximum of the Airy function Ai.

Original entry on oeis.org

5, 3, 5, 6, 5, 6, 6, 5, 6, 0, 1, 5, 6, 9, 9, 8, 6, 1, 1, 4, 4, 8, 6, 0, 2, 0, 0, 6, 9, 5, 3, 2, 2, 8, 5, 4, 8, 6, 9, 7, 3, 1, 7, 3, 7, 2, 3, 2, 9, 8, 3, 2, 5, 9, 3, 6, 4, 8, 4, 0, 4, 5, 1, 9, 5, 9, 7, 7, 6, 3, 5, 9, 2, 7, 1, 1, 3, 2, 2, 0, 3, 1, 7, 7, 8, 7, 6, 4, 6, 6, 6, 7, 6, 5, 1, 9, 2, 4, 2, 1, 2, 2, 7, 5, 7, 8, 4, 0, 0, 9, 9, 9, 0, 4, 2, 6, 6, 4, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Mar 07 2016

Keywords

Examples

			0.53565665601569986114486020069532285486973173723298325936484...
		

Crossrefs

Cf. A269892 (location of maximum).

Programs

  • Mathematica
    FindRoot[AiryAiPrime[x] == 0, {x, -1}, WorkingPrecision -> 104][[1, 2]] // AiryAi // RealDigits // First
  • PARI
    computeAtCurrentPrecision()=my(left=-2., right=-1., e=4.>>bitprecision(1.)); while(right-left>e, my(L=(2*left+right)/3, R=(left+2*right)/3); if(airy(L)[1] < airy(R)[1], left=L, right=R)); airy((left+right)/2)[1]; \\ Charles R Greathouse IV, Apr 26 2019
Showing 1-3 of 3 results.