cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A284867 Decimal expansion of Ai(0), where Ai is the Airy function of the first kind.

Original entry on oeis.org

3, 5, 5, 0, 2, 8, 0, 5, 3, 8, 8, 7, 8, 1, 7, 2, 3, 9, 2, 6, 0, 0, 6, 3, 1, 8, 6, 0, 0, 4, 1, 8, 3, 1, 7, 6, 3, 9, 7, 9, 7, 9, 1, 7, 4, 1, 9, 9, 1, 7, 7, 2, 4, 0, 5, 8, 3, 3, 2, 6, 5, 1, 0, 3, 0, 0, 8, 1, 0, 0, 4, 2, 4, 5, 0, 1, 2, 6, 7, 1, 2, 9, 5, 7, 1, 7, 4, 2, 4, 6, 0, 5, 4, 0, 4, 0, 2, 7, 1, 6, 8, 8, 4, 2, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 04 2017

Keywords

Examples

			0.35502805388781723926006318600418317639797917419917724058332651030081...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 56, page 559.

Crossrefs

Cf. A096714, A096715, A269892, A269893, A073006 (Gamma(2/3)), A284868 (Ai'(0)).

Programs

Formula

Ai(0) = 1/(3^(2/3)*Gamma(2/3)).

A284868 Decimal expansion of the derivative Ai'(0) (negated), where Ai is the Airy function of the first kind.

Original entry on oeis.org

2, 5, 8, 8, 1, 9, 4, 0, 3, 7, 9, 2, 8, 0, 6, 7, 9, 8, 4, 0, 5, 1, 8, 3, 5, 6, 0, 1, 8, 9, 2, 0, 3, 9, 6, 3, 4, 7, 9, 0, 9, 1, 1, 3, 8, 3, 5, 4, 9, 3, 4, 5, 8, 2, 2, 1, 0, 0, 0, 1, 8, 1, 3, 8, 5, 6, 1, 0, 2, 7, 7, 2, 6, 7, 6, 7, 9, 0, 2, 8, 0, 6, 5, 4, 1, 9, 6, 4, 0, 5, 8, 2, 7, 2, 7, 5, 3, 8, 4, 3, 1, 3, 3, 7, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 04 2017

Keywords

Examples

			-0.2588194037928067984051835601892039634790911383549345822100018138561...
		

Crossrefs

Cf. A096714, A096715, A269892, A269893, A073005 (Gamma(1/3)), A284867 (Ai(0)).

Programs

  • Mathematica
    RealDigits[AiryAi'[0], 10, 105][[1]]
  • PARI
    -derivnum(x=0,airy(x)[1]) \\ Charles R Greathouse IV, Apr 26 2019

Formula

Ai'(0) = -1/(3^(1/3)*Gamma(1/3)).

A269892 Decimal expansion of the [negated] location of the maximum of the Airy function Ai.

Original entry on oeis.org

1, 0, 1, 8, 7, 9, 2, 9, 7, 1, 6, 4, 7, 4, 7, 1, 0, 8, 9, 0, 1, 7, 3, 2, 4, 7, 8, 3, 3, 9, 9, 7, 4, 3, 8, 2, 4, 2, 1, 8, 2, 0, 5, 4, 4, 1, 2, 5, 4, 4, 3, 4, 5, 6, 3, 8, 7, 0, 8, 6, 1, 4, 1, 3, 9, 8, 2, 8, 0, 1, 6, 4, 6, 7, 2, 3, 6, 2, 0, 4, 0, 3, 4, 1, 4, 7, 1, 5, 5, 0, 9, 7, 1, 4, 0, 1, 2, 2, 3, 0, 7, 8, 1
Offset: 1

Views

Author

Jean-François Alcover, Mar 07 2016

Keywords

Examples

			-1.01879297164747108901732478339974382421820544125443456387...
		

References

  • L. D. Landau & E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press 1971, page 150.

Crossrefs

Cf. A269893 (value of maximum).

Programs

  • Mathematica
    FindRoot[AiryAiPrime[x] == 0, {x, -1}, WorkingPrecision -> 103][[1, 2]] // RealDigits // First
  • PARI
    computeAtCurrentPrecision()=my(left=-2., right=-1., e=4.>>bitprecision(1.)); while(right-left>e, my(L=(2*left+right)/3, R=(left+2*right)/3); if(airy(L)[1] < airy(R)[1], left=L, right=R)); -(left+right)/2; \\ Charles R Greathouse IV, Apr 26 2019

A385253 Decimal expansion of the function AiryAi(x) at x=1.

Original entry on oeis.org

1, 3, 5, 2, 9, 2, 4, 1, 6, 3, 1, 2, 8, 8, 1, 4, 1, 5, 5, 2, 4, 1, 4, 7, 4, 2, 3, 5, 1, 5, 4, 6, 6, 3, 0, 6, 1, 7, 4, 9, 4, 4, 1, 4, 2, 9, 8, 8, 3, 3, 0, 7, 0, 6, 0, 0, 9, 1, 0, 2, 0, 5, 4, 7, 5, 7, 6, 3, 3, 5, 3, 4, 8, 0, 2, 2, 6, 5, 7, 2, 3, 6, 6, 3, 4, 8, 7, 1, 0, 9, 9, 0, 8, 7, 4, 8, 6, 8, 3, 2, 1, 3, 0, 5, 3
Offset: 0

Views

Author

Artur Jasinski, Jul 29 2025

Keywords

Comments

Second derivative at x=1 has that same value.

Examples

			0.1352924163128814155241474235154663...
		

Crossrefs

Programs

  • Maple
    AiryAi(1) ; evalf(%) ; # R. J. Mathar, Jul 31 2025
  • Mathematica
    RealDigits[AiryAi[1], 10, 105][[1]]
  • PARI
    airy(1)[1] \\ Michel Marcus, Jul 29 2025

Formula

Equals AiryAi''(1).
Showing 1-4 of 4 results.