A269940 Triangle read by rows, T(n, k) = Sum_{m=0..k} (-1)^(m + k)*binomial(n + k, n + m) * |Stirling1(n + m, m)|, for n >= 0, 0 <= k <= n.
1, 0, 1, 0, 2, 3, 0, 6, 20, 15, 0, 24, 130, 210, 105, 0, 120, 924, 2380, 2520, 945, 0, 720, 7308, 26432, 44100, 34650, 10395, 0, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 0, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025
Offset: 0
Examples
Triangle T(n,k) starts: [1] [0, 1] [0, 2, 3] [0, 6, 20, 15] [0, 24, 130, 210, 105] [0, 120, 924, 2380, 2520, 945] [0, 720, 7308, 26432, 44100, 34650, 10395] [0, 5040, 64224, 303660, 705320, 866250, 540540, 135135]
Links
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Anthony Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra 411 (2014) 259-311, section 4.4.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Nico M. Temme, Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters, Integral Transforms and Special Functions, 2021.
- Nico M. Temme and Ed J. M. Veling, Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z, arXiv:2202.12857 [math.CA], 2022.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
Crossrefs
Programs
-
Maple
T := (n, k) -> add((-1)^(m+k)*binomial(n+k,n+m)*abs(Stirling1(n+m, m)), m=0..k): seq(print(seq(T(n, k), k=0..n)), n=0..6); # Alternatively: T := proc(n, k) option remember; `if`(k=0, k^n, `if`(k<=0 or k>n, 0, (n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end: for n from 0 to 6 do seq(T(n, k), k=0..n) od;
-
Mathematica
T[n_, k_] := Sum[(-1)^(m+k)*Binomial[n+k, n+m]*Abs[StirlingS1[n+m, m]], {m, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 12 2022 *)
-
Sage
T = lambda n, k: sum((-1)^(m+k)*binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k)) for n in (0..7): print([T(n, k) for k in (0..n)])
-
Sage
# uses[PtransMatrix from A269941] PtransMatrix(8, lambda n: n/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
Formula
T(n,k) = (-1)^k*FF(n+k,n)*P[n,k](n/(n+1)) where P is the P-transform and FF the falling factorial function. For the definition of the P-transform see the link.
T(n,k) = A268438(n,k)*FF(n+k,n)/(2*n)!.
Extensions
Name corrected after notice from Ed Veling by Peter Luschny, Jun 14 2022
Comments