A269941 Triangle read by rows, the coefficients of the partial P-polynomials.
1, 0, -1, 0, -1, 1, 0, -1, 2, -1, 0, -1, 1, 2, -3, 1, 0, -1, 2, 2, -3, -3, 4, -1, 0, -1, 1, 2, 2, -1, -6, -3, 6, 4, -5, 1, 0, -1, 2, 2, 2, -3, -3, -6, -3, 4, 12, 4, -10, -5, 6, -1, 0, -1, 1, 2, 2, 2, -3, -3, -6, -6, -3, 1, 12, 6, 12, 4, -10, -20, -5, 15, 6, -7, 1
Offset: 0
Examples
[[1]], [[0], [-1]], [[0], [-1], [1]], [[0], [-1], [2], [-1]], [[0], [-1], [1, 2], [-3], [1]], [[0], [-1], [2, 2], [-3, -3], [4], [-1]], [[0], [-1], [1, 2, 2], [-1, -6, -3], [6, 4], [-5], [1]], [[0], [-1], [2, 2, 2], [-3, -3, -6, -3], [4, 12, 4], [-10, -5], [6], [-1]] Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805.
Links
- Peter Luschny, The P-transform, 2016.
- Peter Luschny, The Partition Transform, A SageMath Jupyter Notebook, GitHub, 2016/2022.
- Marko Riedel, Answer to Question 4943578, Mathematics Stack Exchange, 2024.
- Peter Taylor, Answer to Question 474483, MathOverflow, 2024.
Programs
-
Maple
PTrans := proc(n, f, nrm:=NULL) local q, p, r, R; if n = 0 then return [1] fi; R := [seq(0,j=0..n)]; for q in combinat:-partition(n) do p := [op(ListTools:-Reverse(q)),0]; r := p[1]+1; mul(binomial(p[j], p[j+1])*f(j)^p[j], j=1..nops(q)); R[r] := R[r]-(-1)^r*% od; if nrm = NULL then R else [seq(nrm(n,k)*R[k+1],k=0..n)] fi end: A269941_row := n -> seq(coeffs(p), p in PTrans(n, n -> x[n])): seq(lprint(A269941_row(n)), n=0..8);
-
Sage
def PtransMatrix(dim, f, norm = None, inverse = False, reduced = False): i = 1; F = [1] if reduced: while i <= dim: F.append(f(i)); i += 1 else: while i <= dim: F.append(F[i-1]*f(i)); i += 1 C = [[0 for k in range(m+1)] for m in range(dim)] C[0][0] = 1 if inverse: for m in (1..dim-1): C[m][m] = -C[m-1][m-1]/F[1] for k in range(m-1, 0, -1): C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1] for i in (2..m-k+1)))/F[1] else: for m in (1..dim-1): C[m][m] = -C[m-1][m-1]*F[1] for k in range(m-1, 0, -1): C[m][k] = -sum(F[i]*C[m-i][k-1] for i in (1..m-k+1)) if norm == None: return C for m in (1..dim-1): for k in (1..m): C[m][k] *= norm(m,k) return C def PMultiCoefficients(dim, norm = None, inverse = False): def coefficient(p): if p <= 1: return [p] return SR(p).fraction(ZZ).numerator().coefficients() f = lambda n: var('x'+str(n)) P = PtransMatrix(dim, f, norm, inverse) return [[coefficient(p) for p in L] for L in P] print(flatten(PMultiCoefficients(9)))
Comments