cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269949 Triangle read by rows, T(n,k) = denominator(binomial(-1/2, n-k))*binomial(n-1/2, k-1/2), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 15, 5, 1, 35, 35, 35, 7, 1, 63, 315, 105, 63, 9, 1, 231, 693, 1155, 231, 99, 11, 1, 429, 3003, 3003, 3003, 429, 143, 13, 1, 6435, 6435, 15015, 9009, 6435, 715, 195, 15, 1, 12155, 109395, 36465, 51051, 21879, 12155, 1105, 255, 17, 1
Offset: 0

Views

Author

Peter Luschny, Apr 07 2016

Keywords

Comments

Numerators of "gravitational descendent fields" presented on p. 28 of the Zhou reference. See also p. 31. - Tom Copeland, Feb 13 2017

Examples

			Triangle starts:
[  1]
[  1,   1]
[  3,   3,    1]
[  5,  15,    5,   1]
[ 35,  35,   35,   7,  1]
[ 63, 315,  105,  63,  9,  1]
[231, 693, 1155, 231, 99, 11, 1]
		

Crossrefs

Cf. A001790 (col. 0), A001803 (col. 1), A161199 (col. 2), A161201 (col. 3).
Cf. A269950.

Programs

  • Mathematica
    Table[Denominator[Binomial[-1/2, n - k]] Binomial[n - 1/2, k - 1/2], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 13 2017 *)
  • Sage
    A269949 = lambda n,k: binomial(-1/2,n-k).denom()*binomial(n-1/2,k-1/2)
    for n in range(8): print([A269949(n,k) for k in (0..n)])