A269992 Decimal expansion of Sum_{n>=1} 2^(1-n)/L(n), where L = A000032 (Lucas numbers).
1, 2, 5, 5, 2, 2, 1, 1, 3, 4, 3, 2, 9, 8, 4, 8, 6, 0, 3, 1, 4, 0, 2, 6, 6, 7, 2, 7, 4, 4, 0, 3, 3, 6, 0, 1, 5, 6, 0, 5, 4, 3, 5, 7, 0, 4, 4, 4, 4, 3, 0, 0, 3, 8, 3, 6, 8, 8, 7, 0, 6, 2, 4, 1, 4, 9, 3, 0, 9, 6, 6, 8, 6, 0, 2, 5, 3, 8, 6, 3, 0, 8, 6, 8, 9, 0
Offset: 1
Examples
1.2552211343298486031402667274403360...
Programs
-
Mathematica
x = N[Sum[2^(1 - n)/LucasL[n], {n, 1, 500}], 100] RealDigits[x][[1]]
-
PARI
L(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032 suminf(n=1, 2^(1-n)/L(n)) \\ Michel Marcus, Nov 17 2020