cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270000 Harmonic fractility of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 3, 3, 2, 4, 1, 2, 3, 2, 3, 3, 1, 1, 3, 1, 3, 3, 1, 5, 1, 3, 3, 2, 2, 2, 1, 1, 1, 5, 3, 3, 1, 3, 3, 4, 1, 2, 2, 3, 3, 6, 3, 3, 2, 1, 4, 3, 1, 2, 2, 3, 3
Offset: 2

Views

Author

Keywords

Comments

In order to define (harmonic) fractility of an integer m > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) < x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) + L(1)*r(n+1) < x <= r(n(1)+1) + L(1)*r(n), and let L(2) = (r(n(2))-r(n(2)+1))*L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...) =: NI(x), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For m > 1, the r-fractility of m is the number of equivalence classes of sequences NI(k/m) for 0 < k < m. Taking r = (1/1, 1/2, 1/3, 1/4, ... ) gives harmonic fractility.
For harmonic fractility, r(n) = 1/n, n(j+1) = floor(L(j)/(x - Sum_{i=1..j} L(i-1)/(n(i)+1))) for all j >= 0, L(0) = 1. - M. F. Hasler, Nov 05 2018

Examples

			NI(1/11) = (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(2/11) = (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(3/11) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(4/11) = (2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(5/11) = (2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...),
NI(6/11) = (1, 11, 1, 1, 1, 1, 1, 1, 1, 1, ...),
NI(7/11) = (1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(8/11) = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...),
NI(9/11) = (1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...),
NI(10/11) = (1, 1, 1, 3, 3, 3, 3, 3, 3, 3, ...),
so that there are 3 equivalence classes for n = 11, and that the harmonic fractility of 11 is 3.
		

Crossrefs

Guide to related sequences:
k - numbers with harmonic fractility k:
1 - A269804
2 - A269805
3 - A269806
4 - A269807
5 - A269808
6 - A269809
Cf. A269570 (binary fractility), A269982 (factorial fractility).

Programs

  • Mathematica
    A270000[n_] := CountDistinct[With[{l = NestWhileList[Rescale[#, {1/(Floor[1/#] + 1), 1/Floor[1/#]}] &, #, UnsameQ, All]}, Min@l[[First@FirstPosition[l, Last@l] ;;]]] & /@ Range[1/n, 1 - 1/n, 1/n]] (* Davin Park, Nov 09 2016 *)
  • PARI
    A270000(n)=#Set(vector(n-1,k,NIR(k/n))) \\ where:
    NIR(x, n, L=1, S=[], c=0)={for(i=2, oo, n=L\x; S=setunion(S, [x/L]); x-=L/(n+1); L/=n*(n+1); setsearch(S, x/L)&& if(c, break, c=!S=[])); S[1]} \\ variant of the function NI() below; returns just a unique representative (smallest x/L occurring within the period) of the equivalence class.
    NI(x, n=[], L=1, S=[], c=0)={for(i=2, oo, n=concat(n, L\x); c|| S=setunion(S, [x/L]); x-=L/(n[#n]+1); L/=n[#n]*(n[#n]+1); if(!c, setsearch(S, x/L)&& [c,S]=[i,x/L], x/L==S, c-=i; break)); [n[1..2*c-1], n[c..-1]]} \\ Returns the harmonic nested interval sequence for x in the form [transition, period]. (End)

Extensions

Definition corrected by Jack W Grahl, Jun 27 2018
Edited by M. F. Hasler, Nov 05 2018