cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270050 Numbers of the form 2 * (x^2 + xy + y^2).

Original entry on oeis.org

0, 2, 6, 8, 14, 18, 24, 26, 32, 38, 42, 50, 54, 56, 62, 72, 74, 78, 86, 96, 98, 104, 114, 122, 126, 128, 134, 146, 150, 152, 158, 162, 168, 182, 186, 194, 200, 206, 216, 218, 222, 224, 234, 242, 248, 254, 258, 266, 278, 288, 294, 296, 302, 312, 314, 326, 338, 342, 344
Offset: 1

Views

Author

Altug Alkan, Mar 09 2016

Keywords

Comments

Integers of the form (x^2 + xy + y^2) / 2. See comments in A266836 about the numbers of the form x^2 + xy + y^2.

Examples

			6 is a term because 6 = (4^2 + 4*(-2) + (-2)^2) / 2.
		

Crossrefs

Cf. A003136.

Programs

  • Mathematica
    Select[Range[0, 400], Resolve@ Exists[{x, y}, Reduce[# == (x^2 + x y + y^2)/2, {x, y}, Integers]] &] (* Michael De Vlieger, Mar 09 2016 *)
  • PARI
    x='x+O('x^700); p=eta(x)^3/eta(x^3); for(n=0, 699, if(polcoeff(p, n) != 0 && n % 2 == 0, print1(n/2, ", ")));
    
  • PARI
    list(lim)=my(v=List(), y, t); lim\=2; for(x=0, sqrtint(lim\3), my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, 2*t); y++)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017

Formula

a(n) = 2 * A003136(n).