cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A270248 Even Löschian numbers.

Original entry on oeis.org

0, 4, 12, 16, 28, 36, 48, 52, 64, 76, 84, 100, 108, 112, 124, 144, 148, 156, 172, 192, 196, 208, 228, 244, 252, 256, 268, 292, 300, 304, 316, 324, 336, 364, 372, 388, 400, 412, 432, 436, 444, 448, 468, 484, 496, 508, 516, 532, 556, 576, 588, 592, 604, 624, 628, 652, 676
Offset: 1

Views

Author

Altug Alkan, Mar 14 2016

Keywords

Comments

Even numbers of the form x^2 - xy + y^2.

Examples

			Even number 12 is a term because 12 = 2^2 + 2*2 + 2^2.
		

Crossrefs

Cf. Loeschian numbers: A003136 (all), A266836 (2*k+1), A202822 (3*k+1), A260682 (6*k+1).

Programs

  • Mathematica
    Select[Range[0, 680, 2], Resolve@ Exists[{x, y}, Reduce[# == (x^2 - x y + y^2), {x, y}, Integers]] &] (* Michael De Vlieger, Mar 15 2016 *)
  • PARI
    x='x+O('x^800); p=eta(x)^3/eta(x^3); for(n=0, 799, if(polcoeff(p, n) != 0 && n % 2 == 0, print1(n, ", ")));
    
  • PARI
    list(lim)=my(v=List(), y, t); forstep(x=0, sqrtint(lim\3), 2, my(y=x, t); while((t=x^2+x*y+y^2)<=lim, listput(v, t); y+=2)); Set(v) \\ Charles R Greathouse IV, Jul 05 2017

Formula

a(n) = 2 * A270050(n) = 4 * A003136(n).
Showing 1-1 of 1 results.