A270062 Number of tilings of a 2 X n rectangle using monominoes and trominoes of any shape.
1, 1, 5, 14, 45, 140, 438, 1371, 4287, 13413, 41956, 131249, 410572, 1284352, 4017713, 12568213, 39315905, 122988066, 384731445, 1203517448, 3764844982, 11777193395, 36841433019, 115247422841, 360517151000, 1127770261265, 3527892525112, 11035958382864
Offset: 0
Examples
a(3) = 14: ._____. ._____. ._____. ._____. ._____. ._____. ._____. |_____| |_|_|_| |_____| |_| |_| | |_|_| | ._|_| |_. |_| |_____| |_____| |_|_|_| |___|_| |___|_| |_|_|_| |_|_|_| . ._____. ._____. ._____. ._____. ._____. ._____. ._____. |_|_|_| | ._| | | |_. | |_|_| | |_| |_| |_| ._| |_|_. | |_|_|_| |_|___| |___|_| |_|___| |_|___| |_|_|_| |_|_|_| . .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Tromino
- Index entries for linear recurrences with constant coefficients, signature (1,5,5,1,-1,-1).
Crossrefs
Column k=2 of A270061.
Programs
-
Maple
a:= n-> (Matrix(6, (i, j)-> `if`(i+1=j, 1, `if`(i=6, [-1$2, 1, 5$2, 1][j], 0)))^n. <<1, 1, 5, 14, 45, 140>>)[1, 1]: seq(a(n), n=0..30);
Formula
G.f.: -(x^3+x^2-1)/(x^6+x^5-x^4-5*x^3-5*x^2-x+1).
a(n) = a(n-1) +5*(a(n-2)+a(n-3)) +a(n-4) -a(n-5) -a(n-6).