cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270109 a(n) = n^3 + (n+1)*(n+2).

Original entry on oeis.org

2, 7, 20, 47, 94, 167, 272, 415, 602, 839, 1132, 1487, 1910, 2407, 2984, 3647, 4402, 5255, 6212, 7279, 8462, 9767, 11200, 12767, 14474, 16327, 18332, 20495, 22822, 25319, 27992, 30847, 33890, 37127, 40564, 44207, 48062, 52135, 56432, 60959, 65722, 70727, 75980, 81487, 87254
Offset: 0

Views

Author

Bruno Berselli, Mar 11 2016, at the suggestion of Giuseppe Amoruso in BASE Cinque forum

Keywords

Comments

For n>1, many consecutive terms of the sequence are generated by floor(sqrt(n^2 + 2)^3) + n^2 + 2.
It appears that this is a subsequence of A000037 (the nonsquares).
The primes in the sequence belong to A045326.
Inverse binomial transform is 2, 5, 8, 6, 0, 0, 0, ... (0 continued).

Crossrefs

Subsequence of A001651, A047212.
Cf. A027444: numbers of the form n^3+n*(n+1); A085490: numbers of the form n^3+(n-1)*n.
Cf. A008865: numbers of the form n+(n+1)*(n+2); A130883: numbers of the form n^2+(n+1)*(n+2).

Programs

  • Magma
    [n^3+(n+1)*(n+2): n in [0..50]];
  • Mathematica
    Table[n^3 + (n + 1) (n + 2), {n, 0, 50}]
  • Maxima
    makelist(n^3+(n+1)*(n+2), n, 0, 50);
    
  • PARI
    vector(50, n, n--; n^3+(n+1)*(n+2))
    
  • Sage
    [n^3+(n+1)*(n+2) for n in (0..50)]
    

Formula

O.g.f.: (2 - x + 4*x^2 + x^3)/(1 - x)^4.
E.g.f.: (2 + x)*(1 + x)^2*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3.
a(n+h) - a(n) + a(n-h) = n^3 + n^2 + (6*h^2+3)*n + (2*h^2+2) for any h. This identity becomes a(n) = n^3 + n^2 + 3*n + 2 if h=0.
a(h*a(n) + n) = (h*a(n))^3 + (3*n+1)*(h*a(n))^2 + (3*n^2+2*n+3)*(h*a(n)) + a(n) for any h, therefore a(h*a(n) + n) is always a multiple of a(n).
a(n) + a(-n) = 2*A059100(n) = A255843(n).
a(n) - a(-n) = 4*A229183(n).