A270151 Discriminator of the Fibonacci numbers; least positive integer r such that F(2), F(3), ..., F(n+1) are all incongruent modulo r.
1, 2, 3, 5, 8, 9, 14, 14, 15, 15, 15, 30, 30, 30, 30, 30, 35, 35, 35, 35, 59, 59, 59, 59, 79, 79, 83, 83, 83, 83, 83, 83, 120, 120, 120, 157, 157, 157, 157, 173, 173, 173, 173, 173, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 193, 311, 311, 311, 311, 337, 337, 337, 337, 337, 409, 409, 409, 409, 431
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..5000
- Arnold, L. K.; Benkoski, S. J.; and McCabe, B. J.; The discriminator (a simple application of Bertrand's postulate). Amer. Math. Monthly 92 (1985), 275-277.
- A. de Clercq, F. Luca, L. Martirosyan, M. Matthis, P. Moree, M.A. Stoumen and M. Weiß, Binary recurrences for which powers of two are discriminating moduli, arXiv:2003.01559 [math.NT], 2020. See Table 1 p. 7.
Crossrefs
Cf. A016726.