cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A119768 Twin prime pairs that sum to a power.

Original entry on oeis.org

3, 5, 17, 19, 71, 73, 107, 109, 881, 883, 1151, 1153, 2591, 2593, 3527, 3529, 4049, 4051, 15137, 15139, 20807, 20809, 34847, 34849, 46817, 46819, 69191, 69193, 83231, 83233, 103967, 103969, 112337, 112339, 139967, 139969, 149057, 149059, 176417
Offset: 1

Views

Author

Walter Kehowski, Jun 18 2006

Keywords

Comments

Since twin prime pairs greater than (3,5) occur as either (5,7) mod 12 or (11,1) mod 12, all sums of such twin primes are always divisible by 12. Thus all powers are divisible by 12. The first few terms in base 12 are: 15, 17, 5E, 61, 8E, 91, 615, 617, 7EE, 801, 15EE, 1601 and the corresponding powers are 30, 100, 160, 1030, 1400, 3000.

Examples

			a(5) + a(6) = 71 + 73 = 144 = 12^2.
		

Crossrefs

Programs

  • Maple
    egcd := proc(n::nonnegint) local L; if n=0 or n=1 then n else L:=ifactors(n)[2]; L:=map(z->z[2],L); igcd(op(L)) fi end: L:=[]: for w to 1 do for x from 1 to 2*12^2 do s:=6*x; for r from 2 to 79 do t:=s^r; if egcd(s)=1 and andmap(isprime,[(t-2)/2,(t+2)/2]) then print((t-2)/2,(t+2)/2,t)); L:=[op(L),[(t-2)/2,(t+2)/2,t]]; fi; od od od; L:=sort(L,(a,b)->a[1]op(z[1..2]),L);
  • Mathematica
    powQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; aQ[n_] := PrimeQ[n] && PrimeQ[n + 2] && powQ[2 n + 2]; s = Select[Range[10^4], aQ]; Union @ Join[s, s + 2] (* Amiram Eldar, Jan 05 2020 *)
  • PARI
    my(pp=3);forprime(p=5,180000,if(p-pp==2,if(ispower(p+pp),print1(pp,", ",p,", ")));pp=p) \\ Hugo Pfoertner, Jan 05 2020

Formula

If a(n) is the above sequence of twin primes, then a(2n-1),a(2n) is a twin prime pair and a(2n-1)+a(2n) is a power.
a(2*n-1) = A270231(n), a(2*n) = A270231(n) + 2. - Amiram Eldar, Jan 05 2020

Extensions

a(1)-a(2) inserted by Amiram Eldar, Jan 05 2020

A330978 a(n) = (p1 + p2)/36 such that p1 >= 5 and p2 = p1 + 2 are twin primes and p1 + p2 is a k-th power with k > 1.

Original entry on oeis.org

1, 4, 6, 49, 64, 144, 196, 225, 841, 1156, 1936, 2601, 3844, 4624, 5776, 6241, 7776, 8281, 9801, 10000, 11449, 15625, 20164, 21609, 24336, 26244, 26569, 29929, 36100, 40804, 44944, 53361, 60025, 63504, 64009, 69696, 87025, 93636, 100489, 108900, 109561, 126025
Offset: 1

Views

Author

Hugo Pfoertner, Jan 05 2020

Keywords

Examples

			a(1) = 1: p1 = 17 and p2 = 19 are the first such pair, with p1 + p2 = 36 = 6^2, (17 + 19)/36 = 1;
a(2) = 4: p1 = 71, p2 = 73; p1 + p2 = 144 = 12^2, (71 + 73)/36 = 4.
		

Crossrefs

Programs

  • Maple
    isa := n -> isprime(n) and isprime(n+2) and iperfpow(2*n+2) <> FAIL:
    select(isa, [$4..1000000]): map(n -> (n+1)/18, %); # Peter Luschny, Jan 05 2020
  • PARI
    my(pp=5); forprime(p=7,130000, if(p-pp==2, if(ispower(p+pp), print1((p+pp)/36,", "))); pp=p)

A330980 a(n) = (p1 + p2)/216 such that p1 >= 5 and p2 = p1 + 2 are twin primes and p1 + p2 is a k-th power with k >= 3.

Original entry on oeis.org

1, 1296, 24389, 274625, 531441, 970299, 2343750, 2515456, 4492125, 5268024, 5451776, 6967871, 8000000, 18821096, 25672375, 27270901, 32461759, 37748736, 41421736, 43243551, 50653000, 64000000, 69426531, 80062991, 81746504, 82881856, 94818816, 100663296
Offset: 1

Views

Author

Hugo Pfoertner, Jan 05 2020

Keywords

Comments

The values of k corresponding to the first terms are: 3, 7, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, ...

Examples

			a(1) = 1: p1 = 107 and p2 = 109 is the first pair with a sum that is a 3rd power, 216=6^3;
a(2) = 1296: p1 = 1296*108 - 1 = 139967, p2 = 1296*108 + 1 = 139969, p1 + p2 = 279936 = 6^7.
		

Crossrefs

Programs

  • PARI
    my(pp=5,j); forprime(p=7,10000000000, if(p-pp==2, if(j=ispower(p+pp), if(j>2, print1((p+pp)/216,", ")))); pp=p)
Showing 1-3 of 3 results.