A270271 Odd numbers n such that for every k >= 1, n*2^k + 1 has a divisor in the set {3, 5, 17, 257, 641, 65537, 6700417}.
201446503145165177, 1007236913771681629, 1697906240793858917, 2331023822106839599, 2935363331541925531, 3367034409844073483, 3914042604075779837, 4863495246870308311, 5036162578625852633, 5590196669446332863, 6705290764721718679, 7284449444083822547
Offset: 1
Keywords
References
- M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 72-73.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..64
- Chris Caldwell, The Prime Glossary, Sierpinski number
- W. Sierpiński, Sur un problème concernant les nombres k * 2^n + 1, Elem. Math., 15 (1960), pp. 73-74.
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Programs
-
Magma
lst:=[]; e:=2^64; P:=PrimeDivisors(e-1); C:=[1, 1, 1, 1, 1, 1, 33]; Pr:=&*[P[i]: i in [1..#P]]; S:=CRT([Modexp(2, C[i], P[i]): i in [1..#C]], P); for t in [1..33] do a:=S+Pr; g:=Gcd(a, e); S:=Floor(a/g); Append(~lst, S); end for; Sort(lst)[1..12];
Formula
a(n) = a(n-64) + 2*(2^64-1) for n > 64.