cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270271 Odd numbers n such that for every k >= 1, n*2^k + 1 has a divisor in the set {3, 5, 17, 257, 641, 65537, 6700417}.

Original entry on oeis.org

201446503145165177, 1007236913771681629, 1697906240793858917, 2331023822106839599, 2935363331541925531, 3367034409844073483, 3914042604075779837, 4863495246870308311, 5036162578625852633, 5590196669446332863, 6705290764721718679, 7284449444083822547
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 14 2016

Keywords

References

  • M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 72-73.

Crossrefs

Cf. A257647. Subsequence of A076336.

Programs

  • Magma
    lst:=[]; e:=2^64; P:=PrimeDivisors(e-1); C:=[1, 1, 1, 1, 1, 1, 33]; Pr:=&*[P[i]: i in [1..#P]]; S:=CRT([Modexp(2, C[i], P[i]): i in [1..#C]], P); for t in [1..33] do a:=S+Pr; g:=Gcd(a, e); S:=Floor(a/g); Append(~lst, S); end for; Sort(lst)[1..12];

Formula

a(n) = a(n-64) + 2*(2^64-1) for n > 64.