A270347 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/4,1/8,...)
2, 3, 7, 27, 650, 689392, 1130869248534, 2046949388776880512222550, 5664769376602746621028306587399157369622446276283, 61600875764518391286867927949695082949269716944423018977948114995142883041085134431474743108010213
Offset: 1
Examples
sqrt(1/2) = 1/2 + 1/(2*3) + 1/(4*7) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments