cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270350 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r = (1, 1/2, 1/4, 1/8, ...)

Original entry on oeis.org

2, 3, 4, 44, 1446, 3423518, 263631451737996, 70985515555913904515293113895, 8645798497265822420998718966216306501746531100894289290802, 78713180847550502513757221862401308079612732875925186430170968601702893264445327722349352410275677392885249561650440
Offset: 1

Views

Author

Clark Kimberling, Mar 17 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(4*4) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 2/2^k;
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(3)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016