A270350 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r = (1, 1/2, 1/4, 1/8, ...)
2, 3, 4, 44, 1446, 3423518, 263631451737996, 70985515555913904515293113895, 8645798497265822420998718966216306501746531100894289290802, 78713180847550502513757221862401308079612732875925186430170968601702893264445327722349352410275677392885249561650440
Offset: 1
Examples
sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(4*4) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(3)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments