A270351 Denominators of r-Egyptian fraction expansion for golden ratio - 1, where r = (1, 1/2, 1/4, 1/8, ...)
2, 5, 14, 707, 1470654, 1143462781221, 1805535113251940020114035, 2497859054491311040375647235065337168455108737151, 3189945744303964831068292153370103839290925070278698110007359838830245675325591867634500100743606
Offset: 1
Examples
tau - 1 = 1/2 + 1/(2*5) + 1/(4*14) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = GoldenRatio; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=(sqrt(5)-1)/2) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments