A270352 Denominators of r-Egyptian fraction expansion for 1/Pi, where r = (1, 1/2, 1/4, 1/8, ...)
4, 8, 44, 977, 498723, 138012074956, 45087947486104434546449, 2223745971024423874814212532278502253766982404, 3439676840537267257806008796995789895364959784333600339427716437786254731225969490712842205
Offset: 1
Examples
1/Pi = 1/4 + 1/(2*8) + 1/(4*44) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1/Pi; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=1/Pi) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments