A270354 Denominators of r-Egyptian fraction expansion for 1/e, where r = (1, 1/2, 1/4, 1/8, ...)
3, 15, 207, 24777, 1797835772, 2401072239422894903, 36947191921380265723491992928675837908, 1242004943621920150072266455052958650167034792376067355585774287542963919184
Offset: 1
Examples
1/e = 1/3 + 1/(2*15) + 1/(4*207) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1/E; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=exp(-1)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments