A270356 Denominators of r-Egyptian fraction expansion for log(2), where r = (1, 1/2, 1/4, 1/8, ...)
2, 3, 10, 85, 6297, 105324757, 10291333539500676, 72129634294824118806681649563665, 3614136206345221874912341551952565198060297016360952863886217259
Offset: 1
Examples
log(2) = 1/2 + 1/(2*3) + 1/(4*10) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Log(2); Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=log(2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments