A270394 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/Fibonacci(k+1).
2, 3, 9, 59, 9437, 62059971, 2813586350787717, 8534689167911295735140758101600, 54171527001975050997893888972139886506909953999125751170768531
Offset: 1
Examples
sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + 1/(5*59) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/fibonacci(k+1); f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016
Comments