A270396 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/Fibonacci(k+1).
3, 7, 36, 1040, 1378784, 2783678150237, 20812561896916543523976387, 398006071848302987834283599453836703483929049938762, 105246367677020752496441044566935490666701848819994695873528056638957197400663802988967689301303582936
Offset: 1
Examples
sqrt(2) - 1 = 1/3 + 1/(2*7) + 1/(3*36) + 1/(5*1040) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/fibonacci(k+1); f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016
Comments