A270397 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r(k) = 1/Fibonacci(k+1).
2, 3, 6, 21, 411, 120274, 10572781147, 74407087111123560666, 5372512080606517833291366730287672914459, 41169436260792910821230360026041473906108740980452651576082359437785122898819171
Offset: 1
Examples
sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(3*6) + 1/(5*21) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..13
- Eric Weisstein's World of Mathematics, Egyptian Fraction.
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/fibonacci(k+1); f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(3)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016
Comments