cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270417 Number of integer-sided right triangles with semiperimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Henry Bottomley, Mar 16 2016

Keywords

Comments

Number of positive integer solutions to x*y*(y+z) = n with y and z coprime and of opposite parity and z < y.
Records occur at 1, 6, 30, 60, 120, 210, 360, 420, 840, 1260, 2310, 2520, 4620, 9240, 13860, 27720, 55440, 60060, ... - Antti Karttunen, Sep 25 2018

Examples

			a(25)=0 since 2*25 = 50 is not the perimeter of a suitable triangle;
a(30)=2 since 2*30 = 60 = 15+20+25 = 10+24+26;
a(35)=1 since 2*35 = 70 = 20+21+29.
		

Crossrefs

Cf. A010814. Nonzero for terms in A005279.

Programs

  • Mathematica
    a[n_] := Count[{x, y, z} /. {ToRules[Reduce[x>0 && y>0 && z>0 && zJean-François Alcover, Jun 03 2017 *)
  • PARI
    A270417(n) = { my(s=0); fordiv(n,x,fordiv(n/x,y,my(w=n/(x*y)); if((w < 2*y)&&(w>y)&&(w%2)&&(1==gcd(w,y)),s++))); (s); }; \\ (Here z = w-y) - Antti Karttunen, Sep 25 2018