A270439 Alternating sum of nonsquares (A000037).
2, -1, 4, -2, 5, -3, 7, -4, 8, -5, 9, -6, 11, -7, 12, -8, 13, -9, 14, -10, 16, -11, 17, -12, 18, -13, 19, -14, 20, -15, 22, -16, 23, -17, 24, -18, 25, -19, 26, -20, 27, -21, 29, -22, 30, -23, 31, -24, 32, -25, 33, -26, 34, -27, 35, -28, 37, -29, 38, -30, 39, -31, 40, -32, 41, -33, 42, -34, 43, -35, 44, -36, 46, -37, 47
Offset: 1
Examples
a(1) = a(2*1-1) = 1 + floor(1/2 + sqrt(2*1)) = 2; a(2) = a(2*1) = -1; a(3) = a(2*2-1) = 2 + floor(1/2 + sqrt(2*2)) = 4; a(4) = a(2*2) = -2; a(5) = a(2*3-1) = 3 + floor(1/2 + sqrt(2*3)) = 5; a(6) = a(2*3) = -3, etc. or a(1) = 2; a(2) = 2 - 3 = -1; a(3) = 2 - 3 + 5 = 4; a(4) = 2 - 3 + 5 - 6 = -2; a(5) = 2 - 3 + 5 - 6 + 7 = 5; a(6) = 2 - 3 + 5 - 6 + 7 - 8 = -3, etc. (2, 3, 5, 6, 7, 8, ... is the nonsquares).
Programs
-
Mathematica
Table[Sum[(-1)^(k + 1) (k + Floor[1/2 + Sqrt[k]]), {k, n}], {n, 75}]
-
PARI
a(n)=if(n%2, sqrtint(4*n-3)+n+2, -n)\2 \\ Charles R Greathouse IV, Aug 03 2016
-
Python
from math import isqrt def A270439(n): return (n>>1)+1+(m:=isqrt(n+1))+int(n-m*(m+1)>=0) if n&1 else -(n>>1) # Chai Wah Wu, Nov 14 2022
Comments